Glaucoma Detection in Fundus Eye Images using Convolutional Neural Network Method with Visual Geometric Group 16 and Residual Network 50 Architecture

Authors

  • Chandra Nugraha Universitas Nusa Mandiri Jakarta
  • Sri Hadianti Universitas Nusa Mandiri Jakarta

DOI:

https://doi.org/10.37034/medinftech.v1i2.7

Keywords:

Convolutional Neural Network (CNN), Geometric Group-16 (VGG-16), Residual Network-50 (ResNet-50), Glaucoma, Fundus

Abstract

Glaucoma is an eye disease usually caused by abnormal eye pressure. One of the causes of abnormal eye pressure is blockage of fluid flow, which if detected too late can lead to blindness. Glaucoma can be identified by examining specific areas on the retina fundus image. The aim of this study is to detect positive and negative glaucoma in fundus images. The image data was obtained from the glaucoma_detection dataset, consisting of 520 images, including 134 glaucoma-infected images and 386 normal images. This study uses the Convolutional Neural Network (CNN) method with Visual Geometric Group-16 (VGG-16) and Residual Network-50 (ResNet-50) architectures. The research and testing results using the VGG-16 architecture obtained an accuracy rate of 78%, while using the ResNet-50 architecture obtained an accuracy rate of 80%.

Downloads

Download data is not yet available.

References

A. R. Tobias, D. S., & Widiarti, “Deteksi Glaukoma pada Citra Fundus Retina dengan Metode K-Nearest Neighbor,” Semin. Nas. Ilmu Komput., 2016.

A. Mustofa, H. Tjandrasa, and B. Amaliah, “Deteksi Penyakit Glaukoma pada Citra Fundus Retina Mata Menggunakan Adaptive Thresholding dan Support Vector Machine,” J. Tek. ITS, vol. 5, no. 2, Oct. 2016, doi: 10.12962/j23373539.v5i2.18929.

M. R. A. Romadhoni, R. Magdalena, and R. Y. N. Fuadah, “Klasifikasi Mata Glaukoma dan Mata Normal Menggunakan Metode Support Support Vector Machine,” e-Proceeding Eng., vol. Vol.7, No., no. ISSN : 2355-9365, p. 768, 2020.

Y. G. K, I. Santoso, and R. R. Isnanto, “Klasifikasi Citra Dengan Matriks Ko-Okurensi Aras Keabuan (Gray Level Co-occurrence Matrix-GLCM) Pada Lima Kelas Biji-Bijian,” Undergrad. thesis, no. Jurusan Teknik Elektro Fakultas Teknik Undip, 2011.

M. Zufar and B. Setiyono, “Convolutional Neural Networks Untuk Pengenalan Wajah Secara Real-time,” J. Sains dan Seni ITS, vol. 5, no. 2, 2016.

F. N. Cahya, N. Hardi, D. Riana, and S. Hadiyanti, “Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network (CNN),” SISTEMASI, vol. 10, no. 3, p. 618, Sep. 2021, doi: 10.32520/stmsi.v10i3.1248.

M. Douider, “glaucoma_détection.” https://www.kaggle.com/meryemdouider/glaucoma-dtection.

F. F. Maulana and N. Rochmawati, “Klasifikasi Citra Buah Menggunakan Convolutional Neural Network,” J. Informatics Comput. Sci., vol. Volume 01, no. JINACS, pp. 104–108, 2019.Riana, A. N. Hidayanto, S. Hadianti, and D. Napitupulu, “Integrative Factors of E-Health Laboratory Adoption: A Case of Indonesia,” Future Internet, vol. 13, no. 2, p. 26, Jan. 2021, doi: 10.3390/fi13020026.

Downloads

Published

2023-06-30

How to Cite

[1]
C. Nugraha and S. Hadianti, “Glaucoma Detection in Fundus Eye Images using Convolutional Neural Network Method with Visual Geometric Group 16 and Residual Network 50 Architecture”, MEDINFTech, vol. 1, no. 2, pp. 36–41, Jun. 2023.

Issue

Section

Articles