Comparison of Classification Results of SVM, KNN, Decision Tree, and Ensemble Methods in Diabetes Diagnosis
DOI:
https://doi.org/10.37034/medinftech.v2i3.62Keywords:
Decision Tree, Ensemble, Diabetes, Support Vector Machine (SVM), K-Nearest Neighbor (KNN)Abstract
This study aims to determine which algorithms and test techniques are the most optimal in detecting diabetes mellitus and obtaining the best results based on the value of accuracy, precision, and recall. In this study, approaches were used in early diagnosis of diabetes using KNN, SVM, Decision Tree, and Ensemble Majority Voting methods in Percentage Split and K-Fold Cross Validation methods. Diabetes is a disease characterized by high blood sugar (glucose) levels and can cause a variety of disease complications and damage to the body's organs if not treated immediately. Early diagnosis of diabetes is becoming crucial so that people can take immediate action to the hospital for immediate treatment. The data used is Healthcare-Diabetes from Kaggle. The results of this study have found that the K-Fold Cross Validation method is better because it can provide an average improvement in Ensemble accuracy of 13.42% compared to the Percentage Split method which only gives an average increase in Ensamble accuracy of 9.15%. The best algorithm for classifying diabetes disease is the Ensemble Majority Voting algorithm using the K-Fold Cross Validation method with a 98.81% accuracy rate. These excellent research results may contribute to detecting early symptoms of diabetes before it become too severe.
Downloads
References
A. Rizky Putra Abimanyu, A. Dwi Rahma, D. Revalina Putri, R. Nur Ilham, W. Azzahra Audia, and M. Arfania, “Pengaruh Terapi Pada Penderita Diabetes Mellitus Sebagai Penurunan Kadar Gula Darah: Review Artikel,” Journal Of Social Science Research., vol. 3, no. 2, pp. 8931–8949, 2023.
S. Rammang, Nurhikmah, and N. Reza, “Pengendalian Diabetes Melitus Melalui Edukasi dan Pemeriksaan Kadar Gula Darah Sewaktu,” Jurnal Pendidikan Tambusai, vol. 7, no. 1, pp. 133–137, 2023.
P. B. N. Setio, D. R. S. Saputro, and Bowo Winarno, “Klasifikasi Dengan Pohon Keputusan Berbasis Algoritme C4.5,” Prisma, Prosiding Seminar Nasional Matematika, vol. 3, pp. 64–71, 2020.
D. Cahyanti, A. Rahmayani, and S. Ainy Husniar, “Analisis Performa Metode Knn pada Dataset Pasien Pengidap Kanker Payudara,” Indonesian Journal of Data Science, vol. 1, no. 2, pp. 39–43, July 2020.
M. Yunus and N. K. A. Pratiwi, “Prediksi Status Gizi Balita Dengan Algoritma K-Nearest Neighbor (KNN) di Puskemas Cakranegara,” JTIM: Jurnal Teknologi Informasi dan Multimedia, vol. 4, no. 4, pp. 221–231, 2023.
F. T. Admojo and Ahsanawati, “Klasifikasi Aroma Alkohol Menggunakan Metode KNN,” Indonesian Journal of Data Science, vol. 1, no. 2, pp. 34–38, July 2020.
M. Saputra, J. P. Sidabuke, R. P. Sinulingga, and R. B. Tamba, “Analisis Metode Algoritma K-Nearest Neighbor (KNN) dan Naive Bayes Untuk Klasifikasi Diabetes Mellitus,” Jurnal TEKINKOM, vol. 6, no. 2, pp. 723–729, 2023.
S. Talib, S. Sudin, and M. D. Suratin, “Penerapan Metode Support Vector Machine (SVM) pada Klasifikasi Jenis Cengkeh Berdasarkan Fitur Tekstur Daun,” Jurnal RESTIA, vol. 2, no. 1, pp. 17-27, February 2024.
N. Prasetiyo, K. Ahmad Baihaqi, S. Arum, P. Lestari, and Y. Cahyana, “Classification of Rice Plants Affected by Rats Using the Support Vector Machine (SVM) Algorithm,” Jurnal Teknik Informatika (JUTIF), vol. 5, no. 2, pp. 637–643, April 2024.
D. S. Rahayu, Nursafika, J. Afifah, and S. Intan, “Classification of Diabetes Mellitus Using C4.5 Algorithm, Support Vector Machine (SVM) and Linear Regression,” SENTIMAS: Seminar Nasional Penelitian dan Pengabdian Masyarakat, vol. 2, pp. 56–63, August 2023.
H. N. Irmanda and Ria Astriratma, “Klasifikasi Jenis Pantun dengan Metode Support Vector Machines (SVM),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 5, pp. 915–922, 2021.
N. Arifin, U. Enri, and N. Sulistiyowati, “Penerapan Algoritma Support Vector Machine (SVM) dengan TF-IDF N-Gram untuk Text Classification,” STRING (Satuan Tulisan Riset dan Inovasi Teknologi, vol. 6, no. 2, pp. 129-136, December 2021.
H. Rifa’i, Ryan Hamonangan, Dian Ade Kurnia, Kaslani, and Mulyawan, “Implementasi Algoritma Decision Tree Dalam Klasifikasi Kompetensi Siswa,” KOPERTIP: Jurnal Ilmiah Manajemen Informatika dan Komputer, vol. 6, no. 1, pp. 15–20, February 2022.
M. Ula, A. F. Ulva, M. Mauliza, M. A. Ali, and Y. R. Said, “Application of Machine Learning in Determining the Classification of Children’S Nutrition With Decision Tree,” Jurnal Teknik Informatika (JUTIF), vol. 3, no. 5, pp. 1457–1465, October 2022.
A. A. Mortara, M. Permatasari, A. Desiani, Y. Andriani, and M. Arhami, “Comparison of C4.5 and Adaptive Boosting Algorithms in Alzheimer's Disease Classification,” Jurnal Teknologi dan Informasi, vol. 13, no. 2, pp. 196–207, September 2023.
D. Fatmawati, W. Trisnawati, Y. Jumaryadi, and G. Triyono, “Klasifikasi Tingkat Kepuasan Penggunaan Layanan Teknologi Informasi Menggunakan Decision Tree,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 3, no. 6, pp. 1056–1062, June 2023.
Y. Crismayella, N. Satyahadewi, and H. Perdana, “Algoritma Adaboost pada Metode Decision Tree untuk Klasifikasi Kelulusan Mahasiswa,” Jambura Journal of Mathematics, vol. 5, no. 2, pp. 278–288, August 2023.
Kade Bramasta Vikana Putra, I Putu Agung Bayupati, and Dewa Made Sri Arsa, “Klasifikasi Citra Daging Menggunakan Deep Learning dengan Optimisasi Hard Voting,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 4, pp. 656–662, 2021.
T. I. Rais, “Analisis Sentimen Terhadap Komentar Video Youtube Raiden Shogun-Judgment of Euthymia Menggunakan Metode Majority Voting,” Bachelor thesis, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah, Banten, 2022.
I. Javid, A. K. Z. Alsaedi, and R. Ghazali, “Enhanced Accuracy of Heart Disease Prediction using Machine Learning and Recurrent Neural Networks Ensemble Majority Voting Method,” (IJACSA) International Journal of Advanced Computer Science and Applications, vol. 11, no. 3, pp. 540–551, 2020.
A. M. Bamhdi, I. Abrar, and F. Masoodi, “An Ensemble Based Approach for Effective Intrusion Detection using Majority Vvoting,” TELKOMNIKA (Telecommunication, Computing, Electronics and Control), vol. 19, no. 2, pp. 664–671, April 2021.
M. A. Naji, S. El Filali, M. Bouhlal, E. H. Benlahmar, R. A. Abdelouhahid, and O. Debauche, “Breast Cancer Prediction and Diagnosis through a New Approach based on Majority Voting Ensemble Classifier,” Procedia Computer Science, vol. 191, pp. 481–486, 2021.
N. A. R. Putri and Ardiansyah, “Analisis Sentimen Terhadap Kemajuan Kecerdasan Buatan di Indonesia Menggunakan BERT dan RoBERTa,” Jurnal Sains dan Informatika, vol. 9, no. 2, pp. 136–145, November 2023.
A. Septiarini, R. Saputra, A. Tejawati, and M. Wati, “Deteksi Sarung Samarinda Menggunakan Metode Naive Bayes Berbasis Pengolahan Citra,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 5, pp. 927–935, 2021.
N. Yudistira and A. F. Putra, “Algoritma Decision Tree Dan Smote Untuk Klasifikasi Serangan Jantung Miokarditis Yang Imbalance,” Jurnal Litbang Edusaintech, vol. 2, no. 2, pp. 112–122, October 2021.
R. Umar, I. Riadi, and D. A. Faroek, “Komparasi Image Matching Menggunakan Metode K-Nearest Neighbor (KNN) dan Metode Support Vector Machine (SVM),” Journal of Applied Informatics an Computing, vol. 4, no. 2, pp. 124–131, December 2020.
A. I. Putri, Y. Syarif, P. Jayadi, F. Arrazak, and F. N. Salisah, “Implementation of Decision Tree and Support Vector Machine (SVM) Algorithm for Stunting Risk Prediction,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 3, no. 2, pp. 349–357, October 2024.
A. Wibowo, M. Makruf, I. Virdyna, and F. C. Venna, “Penentuan Klaster Koridor TransJakarta dengan Metode Majority Voting pada Algoritma Data Mining,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 3, pp. 565–575, 2021.
A. Wibowo, S. Wardani, R. W. Dewantoro, W. Wesly, and Leonardo, “Komparasi Tingkat Akurasi Random Forest dan Decision Tree C4.5 Pada Klasifikasi Data Penyakit Infertilitas,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 1, pp. 218–224, August 2023.