Image Segmentation of Normal Pap Smear Thinprep using U-Net with Mobilenetv2 Encoder

Authors

  • Deviana Sely Wita Universitas Nusa Mandiri Jakarta

DOI:

https://doi.org/10.37034/medinftech.v1i2.6

Keywords:

Pap Smear, Encoder, U-Net, MobilenetV2, Segmentation

Abstract

Pap smear is a technique to detect changes in the cells in the uterine wall. With a Pap smear, a woman can be known to have cervical cancer or not. However, the problem of cancer screening on pap smear images is largely hindered by improper cell staining and overlapping cell images. For accurate Pap smear image segmentation, this study uses the U-Net method which is better for Pap smear image segmentation. This method integrates the MobilenetV2 network and converts ordinary convolution into deep split convolution to improve transmission and feature utilization by the network, and at the same time increase the speed of feature extraction. Then the segmentation results from MobilenetV2 produce accuracy in distinguishing the nucleus, cytoplasm, and background on the pap smear image. The dataset used in this study is a normal analogue image of the Pap smear image obtained from the RepoMedUNM Database. Initial data processing is done by digitizing the image, where analog data from the Pap smear is transformed into a digital image. Based on the results of research that has been carried out, namely segmentation of Pap smear images using U-Net with MobilenetV2 encoder, the accuracy value on differences in nucleus, cytoplasm, and background cells is 98%.

Downloads

Download data is not yet available.

References

World Health Organization. (2021). Indonesia Source GLOBOCAN 2020. In International Agency for Research on Cancer.” http://gco.iarc.fr/

Ernawati, D. Octaviana, Mantasia, R. Aulia Yusuf, and Sumarmi, “The Effect of Health Education Based on the Health Belief Model about Pap Smear Test on Women in Rural District Indonesia,” MLU, Mar. 2021, doi: 10.37506/mlu.v21i2.2636.

M. Zhao et al., “SEENS: Nuclei segmentation in Pap smear images with selective edge enhancement,” Future Generation Computer Systems, vol. 114, pp. 185–194, Jan. 2021, doi: 10.1016/j.future.2020.07.045.

S. Hadianti and D. Riana, “Segmentation and analysis of Pap smear microscopic images using the K-means and J48 algorithms,” J. Teknol. dan Sist. Komput, vol. 9, no. 2, pp. 113–119, Apr. 2021, doi: 10.14710/jtsiskom.2021.13943.

H. Bandyopadhyay and M. Nasipuri, “Segmentation Of Pap Smear Images For Cervical Cancer Detection,” in 2020 IEEE Calcutta Conference (CALCON), Kolkata, India, Feb. 2020, pp. 30–33. doi: 10.1109/CALCON49167.2020.9106484.

D. Somasundaram, S. Gnanasaravanan, and N. Madian, “Automatic segmentation of nuclei from pap smear cell images: A step toward cervical cancer screening,” Int J Imaging Syst Technol, vol. 30, no. 4, pp. 1209–1219, Dec. 2020, doi: 10.1002/ima.22444.

Y. Zhou, M. Chen, M. Zhang, T. Wang, F. Yan, and C. Xie, “Automatic Segmentation of Lung Noudles using improved U-Net NetWork,” in 2020 Chinese Automation Congress (CAC), Shanghai, China, Nov. 2020, pp. 1609–1613. doi: 10.1109/CAC51589.2020.9326834.

A. Pribadi and A. K. Adisusilo, “Pemanfaatan 3D U-Net untuk Segmentasi 3 Dimensi Gelembung Penyebab Kanker Paru-paru (Nodule) pada Lapisan Citra CT Scan,” INSYST, vol. 2, no. 2, pp. 74–85, Oct. 2020, doi: 10.52985/insyst.v2i2.159.

I. B. L. M. Suta, M. Sudarma, and I. N. Satya Kumara, “Segmentasi Tumor Otak Berdasarkan Citra Magnetic Resonance Imaging Dengan Menggunakan Metode U-NET,” JTE, vol. 19, no. 2, p. 151, Dec. 2020, doi: 10.24843/MITE.2020.v19i02.P05.

M. R. R. Allaam and A. T. Wibowo, “Klasifikasi Genus Tanaman Anggrek Menggunakan Metode,” p. 37.

N. Nufus et al., “Sistem Pendeteksi Pejalan Kaki Di Lingkungan Terbatas Berbasis SSD MobileNet V2 Dengan Menggunakan Gambar 360° Ternormalisasi,” Prosiding Seminar Nasional Sains Teknologi dan Inovasi Indonesia (SENASTINDO), vol. 3, pp. 123–134, Dec. 2021, doi: 10.54706/senastindo.v3.2021.123

Downloads

Published

2023-06-30

How to Cite

[1]
D. S. Wita, “Image Segmentation of Normal Pap Smear Thinprep using U-Net with Mobilenetv2 Encoder”, MEDINFTech, vol. 1, no. 2, pp. 31–35, Jun. 2023.

Issue

Section

Articles