Optimisation of Image Morphology Operations with Enhancement and Convolution in Tomato Leaf Disease Symptom Recognition
DOI:
https://doi.org/10.37034/medinftech.v3i3.50Keywords:
Disease Detection, Histogram Equalization, Image Morphology, Image Processing, Tomato Leaf DiseaseAbstract
Tomato (Solanum lycopersicum) is an important horticultural crop that is highly susceptible to various leaf diseases such as leaf spot, bacterial wilt, and fruit rot, which significantly reduce yield and quality. This study applies digital image processing techniques including pre-processing, morphology, enhancement, and convolution to improve the recognition of disease symptoms on tomato leaves. Pre-processing using grayscale conversion and median blur effectively reduces noise and sharpens essential details, while morphological operations (erosion and dilation) highlight structural features of infected areas. Enhancement techniques increase image contrast, making the distinction between healthy and diseased tissue more visible. Convolution methods with kernels such as Sobel and Gabor further emphasize edges and texture patterns of leaf lesions. Experimental results show that these methods improve pixel intensity distribution and enhance the visibility of disease symptoms, thereby increasing diagnostic accuracy. The integration of these techniques demonstrates the potential for early detection and classification of tomato leaf diseases, enabling more effective disease management and prevention of crop losses.
Downloads
References
D. Laily, “Deteksi Penyakit Pada Daun Tembakau dengan Menerapkan Algoritma Artificial Neural etwork.” Simetris Journal Teknik Industri, Mesin, Elektro dan Ilmu Komputer, vol. 3, no. 1, 2013. https://doi.org/10.24176/simet.v3i1.88
U. Khultsum and A. Subekti, “Penerapan Algoritma Random Forest dengan Kombinasi Ekstraksi Fitur Untuk Klasifikasi Penyakit Daun Tomat,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 1, p. 186, Jan. 2021, doi: 10.30865/mib.v5i1.2624.
M. Shoaib et al., “Deep learning-based segmentation and classification of leaf images for detection of tomato plant disease,” Frontiers in Plant Science, vol. 13, Oct. 2022, doi: 10.3389/fpls.2022.1031748.
M. Salvi, U. R. Acharya, F. Molinari, and K. M. Meiburger, “The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis,” Computers in Biology and Medicine, vol. 128, p. 104129, Jan. 2021, doi: 10.1016/j.compbiomed.2020.104129.
L. C. Ngugi, M. Abelwahab, and M. Abo-Zahhad, “Recent advances in image processing techniques for automated leaf pest and disease recognition – A review,” Information Processing in Agriculture, vol. 8, no. 1, pp. 27–51, Mar. 2021, doi: 10.1016/j.inpa.2020.04.004.
W. E. Pangesti, G. Widagdo, D. Riana, and S. Hadianti, “Implementasi Kompresi Citra Digital Dengan Membandingkan Metode Lossy Dan Lossless Compression Menggunakan MATLAB,” Jurnal Khatulistiwa Informatika, vol. 8, no. 1, Jun. 2020, doi: 10.31294/jki.v8i1.7759.
Sitohang, Beriman, and Anita Sindar. “Analisis Dan Perbandingan Metode Sobel Edge Detection Dan Prewit Pada Deteksi Tepi Citra Daun Srilangka.”, Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 3, no. 3, hal. 314-322, 2020.
I. P. Sari, F. Ramadhani, A. Satria, and D. Apdilah, “Implementasi Pengolahan Citra Digital dalam Pengenalan Wajah menggunakan Algoritma PCA dan Viola Jones,” Hello World Jurnal Ilmu Komputer, vol. 2, no. 3, pp. 146–157, Oct. 2023, doi: 10.56211/helloworld.v2i3.346.
S. S. Reddy, V. V. R. Maheswara Rao, K. Sravani, and S. Nrusimhadri, “Image quality evaluation: evaluation of the image quality of actual images by using machine learning models,” Bulletin of Electrical Engineering and Informatics, vol. 13, no. 2, pp. 1172–1182, Apr. 2024, doi: 10.11591/eei.v13i2.5947.
G. C. Setyawan and M. P. Nawansari, “Kinerja Penapisan Gaussian dan Median Dalam Pelembutan Citra,” Journal of Information Technology, vol. 2, no. 2, pp. 1–4, Sep. 2022, doi: 10.46229/jifotech.v2i2.433.
A. Shah et al., “Comparative analysis of median filter and its variants for removal of impulse noise from gray scale images,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 3, pp. 505–519, Mar. 2022, doi: 10.1016/j.jksuci.2020.03.007.
Z. F. Sofyan, “Implementasi Metode Arithmatic Mean Filter Untuk Mereduksi Noise Pada Citra Night Shoot,” Journal Global Technology Computer, vol. 2, no. 3, pp. 97–101, Aug. 2023, doi: 10.47065/jogtc.v2i3.4008.
A. Prathik, J. Anuradha, and K. Uma, “A novel filter for removing image noise and improving the quality of image,” International Journal of Cloud Computing, vol. 11, no. 1, p. 14, 2022, doi: 10.1504/ijcc.2022.121073.
R. T. Sabarish and R. Ramadevi, “Analysis and Comparison of Image Enhancement Technique for Improving PSNR of Lung Images by Median Filtering over Histogram Equalization Technique,” CARDIOMETRY, no. 25, pp. 818–824, Feb. 2023, doi: 10.18137/cardiometry.2022.25.818824.
P. Novantara and J. Mutiara, “Perbandingan Metode Gaussian Filter dengan Median Filter dalam Mereduksi Noise Pada Citra Digital,” JEJARING : Jurnal Teknologi dan Manajemen Informatika, vol. 6, no. 1, pp. 19–25, May 2021, doi: 10.25134/jejaring.v6i1.6736.
Katherine, R. Rulaningtyas, and K. Ain, “CT scan image segmentation based on hounsfield unit values using Otsu thresholding method,” Journal of Physics: Conference Series, vol. 1816, no. 1, p. 012080, Feb. 2021, doi: 10.1088/1742-6596/1816/1/012080.
A. Herdiansah, R. I. Borman, D. Nurnaningsih, A. A. J. Sinlae, and R. R. Al Hakim, “Klasifikasi Citra Daun Herbal Dengan Menggunakan Backpropagation Neural Networks Berdasarkan Ekstraksi Ciri Bentuk,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 2, p. 388, Apr. 2022, doi: 10.30865/jurikom.v9i2.4066.
S. M. Al Sasongko, E. D. Jayanti, and S. Ariessaputra, “Application of Gray Scale Matrix Technique for Identification of Lombok Songket Patterns Based on Backpropagation Learning,” JOIV : International Journal on Informatics Visualization, vol. 6, no. 4, p. 835, Dec. 2022, doi: 10.30630/joiv.6.4.1532.
A. F. Setyowati, P. S. Wardani, E. R. Putri, and D. R. P. S. Putri, “Pengolahan Citra Digital EKG Rumah Sakit Tk.IV Samarinda,” Progressive Physics Journal, vol. 5, no. 1, p. 343, Jun. 2024, doi: 10.30872/ppj.v5i1.1037.
A. Fadjeri, B. A. Saputra, D. K. Adri Ariyanto, and L. Kurniatin, “Karakteristik Morfologi Tanaman Selada Menggunakan Pengolahan Citra Digital,” Jurnal Ilmiah SINUS, vol. 20, no. 2, p. 1, Jul. 2022, doi: 10.30646/sinus.v20i2.601.
S. Saifullah, “Segmentasi Citra Menggunakan Metode Watershed Transform Berdasarkan Image Enhancement Dalam Mendeteksi Embrio Telur,” Systemic: Information System and Informatics Journal, vol. 5, no. 2, pp. 53–60, Mar. 2020, doi: 10.29080/systemic.v5i2.798.
Z. Rahman, P. Yi-Fei, M. Aamir, S. Wali, and Y. Guan, “Efficient Image Enhancement Model for Correcting Uneven Illumination Images,” IEEE Access, vol. 8, pp. 109038–109053, 2020, doi: 10.1109/access.2020.3001206.
N. L. Koren, “Correcting Misleading Image Quality Measurements,” Electronic Imaging, vol. 32, no. 9, pp. 242-1-242–10, Jan. 2020, doi: 10.2352/issn.2470-1173.2020.9.iqsp-242.
P. Faradilla, S. F. Rezky, and R. Hamdani, “Implementasi Metode Kernel Konvolusi Dan Contrast Stretching Untuk Perbaikan Kualitas Citra Digital,” Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), vol. 1, no. 6, p. 865, Nov. 2022, doi: 10.53513/jursi.v1i6.6297.
I. Suhardin, A. Patombongi, and A. M. Islah, “Mengidentifikasi Jenis Tanaman Berdasarkan Citra Daun Menggunakan Algoritma Convolutional Neural Network,” Simtek : jurnal sistem informasi dan teknik komputer, vol. 6, no. 2, pp. 100–108, Oct. 2021, doi: 10.51876/simtek.v6i2.101.