Improved Brain Tumor Detection MRI Using Advanced Processing Techniques: Enhancement and Convolution Case Studies
DOI:
https://doi.org/10.37034/medinftech.v2i3.43Keywords:
Brain Tumor MRI Image, Healthcare, Image Enhancement, Image Filtering, Image ProcessingAbstract
Brain tumors present a significant challenge in medical imaging due to their complexity, requiring early detection and precise analysis for effective treatment. This study develops and evaluates advanced image processing workflows aimed at enhancing brain tumor image analysis. The proposed method involves four main steps: enlargement, pre-processing with min-max filters, enhancement, and convolution. The dataset used is from Kaggle, comprising 3,364 images categorized into Glioma (100 images), Meningioma (115 images), No Tumor (105 images), and Pituitary Tumor (74 images). For this study, images from the Glioma, Meningioma, and Pituitary Tumor categories were used, with one image selected from each category for technique evaluation. The results showed significant improvements in image clarity and detail, with high correlation values of 0.9851 for Meningioma and 0.9886 for Pituitary. These findings highlight the effectiveness of the proposed techniques in enhancing image quality and diagnostic accuracy.
Downloads
References
G. B. J. Swamy, “Brain Tumor Detection using Convolutional Neural Network,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 8, no. 6, pp. 615–620, Jun. 2020, doi: 10.22214/ijraset.2020.6100.
M. B. Keough and M. Monje, “Neural Signaling in Cancer,” Annu. Rev. Neurosci., vol. 45, no. 1, pp. 199–221, Jul. 2022, doi: 10.1146/annurev-neuro-111020-092702.
C. Pagano et al., “Impacts of Environmental Pollution on Brain Tumorigenesis,” Int. J. Mol. Sci., vol. 24, no. 5, p. 5045, Mar. 2023, doi: 10.3390/ijms24055045.
F. A. Jibon et al., “Cancerous and Non-Cancerous Brain MRI Classification Method Based on Convolutional Neural Network and Log-Polar Transformation,” Healthcare, vol. 10, no. 9, p. 1801, Sep. 2022, doi: 10.3390/healthcare10091801.
J. Boutry et al., “The evolution and ecology of benign tumors,” Biochim. Biophys. Acta BBA - Rev. Cancer, vol. 1877, no. 1, p. 188643, Jan. 2022, doi: 10.1016/j.bbcan.2021.188643.
N. Ullah et al., “An Effective Approach to Detect and Identify Brain Tumors Using Transfer Learning,” Appl. Sci., vol. 12, no. 11, p. 5645, Jun. 2022, doi: 10.3390/app12115645.
P. Kumari, P. Debta, and A. Dixit, “Oral Potentially Malignant Disorders: Etiology, Pathogenesis, and Transformation Into Oral Cancer,” Front. Pharmacol., vol. 13, p. 825266, Apr. 2022, doi: 10.3389/fphar.2022.825266.
H. S. Kim and D. Y. Lee, “Nanomedicine in Clinical Photodynamic Therapy for the Treatment of Brain Tumors,” Biomedicines, vol. 10, no. 1, p. 96, Jan. 2022, doi: 10.3390/biomedicines10010096.
S. Solanki, U. P. Singh, S. S. Chouhan, and S. Jain, “Brain Tumor Detection and Classification Using Intelligence Techniques: An Overview,” IEEE Access, vol. 11, pp. 12870–12886, 2023, doi: 10.1109/ACCESS.2023.3242666.
E. Ghafourian, F. Samadifam, H. Fadavian, P. Jerfi Canatalay, A. Tajally, and S. Channumsin, “An Ensemble Model for the Diagnosis of Brain Tumors through MRIs,” Diagnostics, vol. 13, no. 3, p. 561, Feb. 2023, doi: 10.3390/diagnostics13030561.
D. Kaur et al., “Computational Intelligence and Metaheuristic Techniques for Brain Tumor Detection through IoMT-Enabled MRI Devices,” Wirel. Commun. Mob. Comput., vol. 2022, pp. 1–20, Jan. 2022, doi: 10.1155/2022/1519198.
D. S. Wankhede and R. Selvarani, “Dynamic architecture based deep learning approach for glioblastoma brain tumor survival prediction,” Neurosci. Inform., vol. 2, no. 4, p. 100062, Dec. 2022, doi: 10.1016/j.neuri.2022.100062.
S. Gritsch, T. T. Batchelor, and L. N. Gonzalez Castro, “Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system,” Cancer, vol. 128, no. 1, pp. 47–58, Jan. 2022, doi: 10.1002/cncr.33918.
P. K. D. Pramanik, A. Solanki, A. Debnath, A. Nayyar, S. El-Sappagh, and K.-S. Kwak, “Advancing Modern Healthcare With Nanotechnology, Nanobiosensors, and Internet of Nano Things: Taxonomies, Applications, Architecture, and Challenges,” IEEE Access, vol. 8, pp. 65230–65266, 2020, doi: 10.1109/ACCESS.2020.2984269.
F. Yan, N. Li, A. M. Iliyasu, A. S. Salama, and K. Hirota, “Insights into security and privacy issues in smart healthcare systems based on medical images,” J. Inf. Secur. Appl., vol. 78, p. 103621, Nov. 2023, doi: 10.1016/j.jisa.2023.103621.
R. Asad, S. U. Rehman, A. Imran, J. Li, A. Almuhaimeed, and A. Alzahrani, “Computer-Aided Early Melanoma Brain-Tumor Detection Using Deep-Learning Approach,” Biomedicines, vol. 11, no. 1, p. 184, Jan. 2023, doi: 10.3390/biomedicines11010184.
D. Uzun Ozsahin, E. P. Onakpojeruo, B. Uzun, M. T. Mustapha, and I. Ozsahin, “Mathematical Assessment of Machine Learning Models Used for Brain Tumor Diagnosis,” Diagnostics, vol. 13, no. 4, p. 618, Feb. 2023, doi: 10.3390/diagnostics13040618.
A. Kumar, “Study and analysis of different segmentation methods for brain tumor MRI application,” Multimed. Tools Appl., vol. 82, no. 5, pp. 7117–7139, Feb. 2023, doi: 10.1007/s11042-022-13636-y.
M. Li, Y. Jiang, Y. Zhang, and H. Zhu, “Medical image analysis using deep learning algorithms,” Front. Public Health, vol. 11, p. 1273253, Nov. 2023, doi: 10.3389/fpubh.2023.1273253.
U. C. Anazodo et al., “A Framework for Advancing Sustainable MRI Access in Africa.” May 05, 2022. doi: 10.1101/2022.05.02.22274588.
P. Kuppler et al., “Microscope-integrated optical coherence tomography for in vivo human brain tumor detection with artificial intelligence,” J. Neurosurg., pp. 1–9, May 2024, doi: 10.3171/2024.1.JNS231511.
C. Moorthy, R. Raghupathy, and N. Nithiyameenatchi, “A Non-invasive Optimized System for rapid detection of Gilomas Brain Tumor using Machine Learning.” Mar. 24, 2023. doi: 10.21203/rs.3.rs-2710589/v1.
S. Nisar and M. Haris, “Neuroimaging genetics approaches to identify new biomarkers for the early diagnosis of autism spectrum disorder,” Mol. Psychiatry, vol. 28, no. 12, pp. 4995–5008, Dec. 2023, doi: 10.1038/s41380-023-02060-9.
J. L. May, J. Garcia-Mora, M. Edwards, and J. H. Rossmeisl, “An Illustrated Scoping Review of the Magnetic Resonance Imaging Characteristics of Canine and Feline Brain Tumors,” Animals, vol. 14, no. 7, p. 1044, Mar. 2024, doi: 10.3390/ani14071044.
M. Miyai, T. Iwama, A. Hara, and H. Tomita, “Exploring the Vital Link Between Glioma, Neuron, and Neural Activity in the Context of Invasion,” Am. J. Pathol., vol. 193, no. 6, pp. 669–679, Jun. 2023, doi: 10.1016/j.ajpath.2023.02.018.
M. Q. Jiang et al., “Reprogramming Glioblastoma Cells into Non-Cancerous Neuronal Cells as a Novel Anti-Cancer Strategy,” Cells, vol. 13, no. 11, p. 897, May 2024, doi: 10.3390/cells13110897.
M. P. Jensen et al., “Artificial intelligence in histopathological image analysis of central nervous system tumours: A systematic review,” Neuropathol. Appl. Neurobiol., vol. 50, no. 3, p. e12981, Jun. 2024, doi: 10.1111/nan.12981.
Q. Zhuang, H. Yang, and Y. Mao, “The Oncogenesis of Glial Cells in Diffuse Gliomas and Clinical Opportunities,” Neurosci. Bull., vol. 39, no. 3, pp. 393–408, Mar. 2023, doi: 10.1007/s12264-022-00953-3.
A. M. Halfpenny and M. D. Wood, “Review of the Recent Changes in the WHO Classification for Pediatric Brain and Spinal Cord Tumors,” Pediatr. Neurosurg., vol. 58, no. 5, pp. 337–355, 2023, doi: 10.1159/000528957.
G. Inetas‐Yengin and O. F. Bayrak, “Related mechanisms, current treatments, and new perspectives in meningioma,” Genes. Chromosomes Cancer, vol. 63, no. 5, p. e23248, May 2024, doi: 10.1002/gcc.23248.
T. Tsukamoto and Y. Miki, “Imaging of pituitary tumors: an update with the 5th WHO Classifications—part 1. Pituitary neuroendocrine tumor (PitNET)/pituitary adenoma,” Jpn. J. Radiol., vol. 41, no. 8, pp. 789–806, Aug. 2023, doi: 10.1007/s11604-023-01400-7.
Lecturer, Centre for Anatomy and Human Identification, University of Dundee, Dundee, United Kingdom et al., “Diffusion Weighted Imaging and Grading of Brain Tumours,” Int. J. Anat. Res., vol. 12, no. 1, pp. 8800–8807, Mar. 2024, doi: 10.16965/ijar.2023.142.
Y. Chen, S. Wang, L. Lin, Z. Cui, and Y. Zong, “Computer Vision and Deep Learning Transforming Image Recognition and Beyond,” Int. J. Comput. Sci. Inf. Technol., vol. 2, no. 1, pp. 45–51, Mar. 2024, doi: 10.62051/ijcsit.v2n1.06.
P. Dhiman, A. Kaur, V. R. Balasaraswathi, Y. Gulzar, A. A. Alwan, and Y. Hamid, “Image Acquisition, Preprocessing and Classification of Citrus Fruit Diseases: A Systematic Literature Review,” Sustainability, vol. 15, no. 12, p. 9643, Jun. 2023, doi: 10.3390/su15129643.
Y. H. Bhosale and K. S. Patnaik, “Bio-medical imaging (X-ray, CT, ultrasound, ECG), genome sequences applications of deep neural network and machine learning in diagnosis, detection, classification, and segmentation of COVID-19: a Meta-analysis & systematic review,” Multimed. Tools Appl., vol. 82, no. 25, pp. 39157–39210, Oct. 2023, doi: 10.1007/s11042-023-15029-1.
C.-J. Tseng and C. Tang, “An optimized XGBoost technique for accurate brain tumor detection using feature selection and image segmentation,” Healthc. Anal., vol. 4, p. 100217, Dec. 2023, doi: 10.1016/j.health.2023.100217.
Z. Rasheed et al., “Brain Tumor Classification from MRI Using Image Enhancement and Convolutional Neural Network Techniques,” Brain Sci., vol. 13, no. 9, p. 1320, Sep. 2023, doi: 10.3390/brainsci13091320.
X. Pei et al., “Robustness of machine learning to color, size change, normalization, and image enhancement on micrograph datasets with large sample differences,” Mater. Des., vol. 232, p. 112086, Aug. 2023, doi: 10.1016/j.matdes.2023.112086.
S. Iqbal, A. N. Qureshi, M. Alhussein, K. Aurangzeb, I. A. Choudhry, and M. S. Anwar, “Hybrid deep spatial and statistical feature fusion for accurate MRI brain tumor classification,” Front. Comput. Neurosci., vol. 18, p. 1423051, Jun. 2024, doi: 10.3389/fncom.2024.1423051.
M. K. Abd-Ellah, A. I. Awad, A. A. M. Khalaf, and A. M. Ibraheem, “Automatic brain-tumor diagnosis using cascaded deep convolutional neural networks with symmetric U-Net and asymmetric residual-blocks,” Sci. Rep., vol. 14, no. 1, p. 9501, Apr. 2024, doi: 10.1038/s41598-024-59566-7.
M. Kashmira. A. Kulkarni, “Brain Tumour Detection Using Image Segmentation: A Review,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 9, no. 12, pp. 208–218, Dec. 2021, doi: 10.22214/ijraset.2021.39184.