Advances in Machine Learning and Deep Learning towards Medical Data Analysis

Authors

  • Andicha Vebiyatama PT. Sysmex Indonesia
  • Muji Ernawati PT. Ellison Global Indonesia

DOI:

https://doi.org/10.37034/medinftech.v2i1.32

Keywords:

Artificial Intelligence, Challenges, Deep Learning, Machine Learning, Medical Data Analysis

Abstract

Artificial intelligence uses advanced algorithms such as deep learning and machine learning methods to help doctors make more accurate diagnoses, identify potential health risks, and customize personalized treatment plans for patients. This literature review explores machine learning and deep learning methods applied to medical datasets over the past five years. The paper discusses the advancements, challenges, and future directions in utilizing ML and DL techniques for medical data analysis. It synthesizes recent research findings, highlighting key methodologies, datasets, and outcomes.

Downloads

Download data is not yet available.

References

D. D. Farhud and S. Zokaei, “Ethical issues of artificial intelligence in medicine and healthcare,” Iran. J. Public Health, vol. 50, no. 11, pp. i–v, 2021, doi: 10.18502/ijph.v50i11.7600.

M. R. King, “The Future of AI in Medicine: A Perspective from a Chatbot,” Ann. Biomed. Eng., vol. 51, no. 2, pp. 291–295, 2023, doi: 10.1007/s10439-022-03121-w.

H. P. Chan, R. K. Samala, L. M. Hadjiiski, and C. Zhou, “Deep Learning in Medical Image Analysis,” Adv. Exp. Med. Biol., vol. 1213, no. 3–21, pp. 1–26, 2020, doi: 10.1007/978-3-030-33128-3_1.

M. M. Taye, “Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions,” Computers, vol. 12, no. 5: 91, pp. 1–16, 2023, doi: 10.3390/computers12050091.

O. P. Jena, B. Bhushan, and U. Kose, Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications, 1st ed. Boca Raton: CRC Press, 2022. doi: https://doi.org/10.1201/9781003226147.

R. An, J. Shen, and Y. Xiao, “Applications of Artificial Intelligence to Obesity Research: Scoping Review of Methodologies,” J. Med. Internet Res., vol. 24, no. 12, pp. 1–32, 2022, doi: 10.2196/40589.

N. Arora, A. Singh, M. Z. N. Al-Dabagh, and S. K. Maitra, “A Novel Architecture for Diabetes Patients’ Prediction Using K -Means Clustering and SVM,” Math. Probl. Eng., vol. 2022, pp. 1–9, 2022, doi: 10.1155/2022/4815521.

M. S. Ali, M. K. Islam, A. A. Das, D. U. S. Duranta, M. F. Haque, and M. H. Rahman, “A Novel Approach for Best Parameters Selection and Feature Engineering to Analyze and Detect Diabetes: Machine Learning Insights,” Biomed Res. Int., vol. 2023, pp. 1–15, 2023, doi: 10.1155/2023/8583210.

R. Saxena, S. K. Sharma, M. Gupta, and G. C. Sampada, “A Novel Approach for Feature Selection and Classification of Diabetes Mellitus: Machine Learning Methods,” Comput. Intell. Neurosci., vol. 2022, pp. 1–11, 2022, doi: 10.1155/2022/3820360.

H. Cho et al., “Machine Learning and Health Science Research: Tutorial,” J. Med. Internet Res., vol. 26, pp. 1–15, 2024, doi: 10.2196/50890.

T. Elemam and M. Elshrkawey, “A Highly Discriminative Hybrid Feature Selection Algorithm for Cancer Diagnosis,” Sci. World J., vol. 2022, pp. 1–15, 2022, doi: 10.1155/2022/1056490.

S. H. Abdulla, A. M. Sagheer, and H. Veisi, “Breast Cancer Classification Using Machine Learning Algorithms: A Review,” Turkish J. Comput. Math. Educ., vol. 141, no. 14, pp. 1970–1979, 2021, doi: 10.1007/978-981-15-7106-0_56.

M. F. Ijaz, M. Attique, and Y. Son, “Data-Driven Cervical Cancer Prediction Model with Outlier Detection and Over-Sampling Methods,” Sensors, vol. 20, no. 10, pp. 1–23, 2020, doi: https://doi.org/10.3390/s20102809.

S. Ibrahim, S. Nazir, and S. A. Velastin, “Feature selection using correlation analysis and principal component analysis for accurate breast cancer diagnosis,” J. Imaging, vol. 7, no. 225, pp. 1–16, 2021, doi: 10.3390/jimaging7110225.

M. Giulietti et al., “The role of artificial intelligence in the diagnosis and prognosis of renal cell tumors,” Diagnostics, vol. 11, no. 206, pp. 1–12, 2021, doi: 10.3390/diagnostics11020206.

M. Ernawati, E. H. Hermaliani, and D. N. Sulistyowati, “Penerapan DeLone and McLean Model untuk Mengukur Kesuksesan Aplikasi Akademik Mahasiswa Berbasis Mobile,” J. IKRA-ITH Inform., vol. 5, no. 18, pp. 58–67, 2020.

R. C. Chen, C. Dewi, S. W. Huang, and R. E. Caraka, “Selecting critical features for data classification based on machine learning methods,” J. Big Data, vol. 7, no. 52, pp. 1–26, 2020, doi: 10.1186/s40537-020-00327-4.

S. Nuarini and A. Rumintarsih, “Optimization of Breast Cancer Prediction using Optimaze Parameter on Machine Learning,” J. Med. Informatics Technol., vol. 1, no. 1, pp. 25–30, 2023, doi: 10.37034/medinftech.v1i1.5.

Downloads

Published

2024-03-31

How to Cite

[1]
A. Vebiyatama and M. Ernawati, “Advances in Machine Learning and Deep Learning towards Medical Data Analysis”, MEDINFTech, vol. 2, no. 1, pp. 21–26, Mar. 2024.

Issue

Section

Articles