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Skin diseases such as dermatitis, psoriasis, and tinea often 

exhibit similar visual characteristics, which can lead to 

frequent errors in early diagnosis. Accurate diagnosis is 

critical, as each disease requires different treatment 

approaches. This study aims to develop an automated 

classification model for these three skin diseases using a 

deep learning approach based on the DenseNet-121 

architecture, which consists of 121 layers designed to 

facilitate efficient feature reuse and gradient flow. The 

dataset consists of 300 labeled images, evenly distributed 

among the three disease classes. To enhance model 

generalization, preprocessing steps were applied, including 

data normalization and augmentation techniques such as 

image rotation (±20°), horizontal and vertical flipping, 

random zooming (range 0.8-1.2×), and brightness 

adjustment (±20%). The model was trained and validated 

using a stratified 5-fold cross-validation strategy. 

Experimental results demonstrated an overall classification 

accuracy of 94.59%, with high precision and recall scores 

across all classes. These results indicate the potential of using 

DenseNet-based deep learning models as decision support 

tools for early skin disease diagnosis. Further validation with 

larger datasets and clinical input from dermatologists is 

recommended to ensure reliability in real-world healthcare 

settings. Visual comparison through Grad-CAM heatmaps 

was also conducted to enhance interpretability and validate 

model focus on relevant skin features. 
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1. Introduction 

Skin diseases are among the most common health 

problems in developing countries, with prevalence rates 

ranging from 20% to 80%, including in Indonesia [1]. 

These diseases affect the outermost part of the body and 

typically manifest as itching, redness, or inflammation 

caused by various factors, such as chemical exposure, 

sunlight, viruses, low immunity, microorganisms, 

fungal infections, and poor personal hygiene [2]. 

Although skin diseases are often non-lethal, they can 

significantly impact patients' quality of life. Accurate 

and timely diagnosis is essential for effective treatment 

[3]. Skin diseases are conditions affecting the outermost 

layer of the body, typically presenting symptoms such 

as itching and redness. These issues can be triggered by 

various factors, including chemical exposure, sunlight, 

viral infections, low immunity, microorganisms, and 

poor personal hygiene [4], [5]. Consequently, making an 

accurate diagnosis is crucial to ensure appropriate 

treatment. However, distinguishing between different 

types of skin diseases can be challenging due to the 

similarity of their visual symptoms [6]. Among the most 

common skin disorders are dermatitis, psoriasis, and 

tinea [7]. 

Traditionally, the diagnosis of skin diseases relies on 

visual inspection by dermatologists, a process that can 

be time-consuming and subjective [8]. With 

advancements in artificial intelligence (AI), particularly 

in the field of computer vision, there is increasing 

potential to support dermatological diagnosis with 

higher accuracy and efficiency [9]. One such AI model 

is DenseNet-121, a convolutional neural network 

architecture that has been pre-trained on large-scale 

datasets such as ImageNet, SVHN, and CIFAR. 

mailto:sri.shv@nusamandiri.ac.id
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DenseNet stands out for its ability to promote feature 

reuse, strengthen feature propagation, and minimize the 

number of trainable parameters compared to other 

models [10]. These characteristics make it especially 

suitable for medical image classification, including skin 

disease diagnosis, where computational efficiency and 

accuracy are critical [11]. 

DenseNet-121 is a variant of the DenseNet family with 

a relatively small number of parameters, making it a 

good fit for applications that require fast, accurate 

predictions without high computational costs [11], [12]. 

The network structure consists of densely connected 

blocks where each layer receives input from all 

preceding layers, ensuring optimal information flow 

across the network [10]. Previous studies have 

demonstrated the effectiveness of DenseNet 

architectures in various domains, such as COVID-19 

detection from CT scans [13], mango maturity 

classification [14], brain anatomy segmentation [15], 

facial expression classification [16], skin cancer 

diagnosis [17], [18] and kidney stone disease diagnosis 

[19]. 

This study also incorporates data augmentation 

techniques such as rotation, flipping, zooming, 

brightness adjustment, and Gaussian blur to increase the 

diversity of training images and enhance model 

generalization. Data augmentation plays a key role in 

improving the robustness of deep learning models, 

especially when dealing with limited datasets [20]. The 

implementation of these techniques in this study 

supports model performance by simulating a wider 

range of visual conditions encountered in real-world 

scenarios. 

The novelty of this study lies in the application of the 

DenseNet-121 model for multi-class classification of 

visually similar skin diseases dermatitis, psoriasis, and 

tinea using a carefully designed augmentation strategy. 

While previous studies have often focused on binary 

classification or cancer detection, this research 

demonstrates the effectiveness of DenseNet-121 in 

addressing the challenge of differentiating between non-

cancerous but clinically relevant skin diseases. The 

combined use of computationally efficient architecture 

and advanced augmentation techniques contributes to 

high diagnostic accuracy while maintaining low 

computational demands. This makes the proposed 

method suitable for deployment in teledermatology 

systems or mobile-based clinical support tools, 

especially in resource-limited healthcare environments. 

2. Research Method 

This study uses the DenseNet-121 approach for the 

classification of skin diseases. The research 

methodology consists of several main stages depicted in 

the Figure 1. 

 

Figure 1. DenseNet-121 Architecture 

2.1. Data Collection  

The dataset used in this study is skin disease image data 

from Tinea, Dermatitis, and Psoriasis. The amount of 

data used; the training program becomes more until the 

best level of accuracy is obtained. The data in this study 

is secondary data obtained from, 

https://www.kaggle.com/, 

https://www.atlasdermatologico.com.br/, 

https://www.mayoclinic.org/, and 

https://dermnetnz.org/ , there are 300 pictures divided 

into three classes. After obtaining the dataset, data 

selection was carried out, there were several data that 

were reduced and added. Furthermore, the data was 

divided into three files, namely, training, validation and 

testing with each file divided into three, namely, Tinea, 

Dermatitis, and Psoriasis, this process resulted in data of 

300 images. 

2.2. Preprocessing 

The dataset used consists of 300 images covering three 

types of skin diseases, namely tinea, dermatitis, and 

psoriasis. Each disease category has a balanced number 

of images, as many as 100 images each. Pre-process 

steps are performed to ensure optimal data quality 

before being used in model training. These stages 

include normalizing the image size to a fixed resolution 

(e.g., 224x224 pixels), as well as augmenting the data to 

increase image variation. The augmentation techniques 

applied include rotation, flipping, zooming, and 

brightness adjustment to overcome the potential for 

overfitting in the model. Furthermore, the images are 

normalized to a pixel scale [0, 1] to ensure uniform data 

distribution. This process is carried out to prepare 

quality and representative data in the next stage of 

analysis. 

2.3. DenseNet-121 Architecture Training 

DenseNet-121 model training, where a pre-trained 

model on the ImageNet dataset is used as a basis. This 

architecture was chosen because of its ability to extract 

hierarchical features and the efficiency of its parameters. 

The training process is carried out in several stages, and 

its overall architecture is illustrated in Figure 2, which 

presents the detailed structure of the DenseNet-121 

https://www.kaggle.com/
https://www.atlasdermatologico.com.br/
https://www.mayoclinic.org/
https://dermnetnz.org/


 

Mahesa Putra, et al 

 

Journal Medical Informatics Technology − Vol. 3, Iss. 2 (2025) 73-78 

75 

 

 

training workflow, including the flow from input 

preprocessing to the final classification output. 

 

Figure 2. DenseNet Architecture Training 

DenseNet architecture training consists of, Input Layer: 

Input an image with a size of (224, 224, 3) (RGB). Initial 

Convolution and Pooling: Convolution (7x7 kernel, 

stride 2), Batch Normalization + ReLU Activation. Max 

Pooling (3x3 kernel, stride 2). 4 Dense Blocks: Dense 

Block 1: 6 Bottleneck Layers, Dense Block 2: 12 

Bottleneck Layers, Dense Block 3: 24 Bottleneck 

Layers, Dense Block 4: 16 Bottleneck Layers. The 

Bottleneck Layer in each dense block has: 1x1 

convolution for dimension reduction, 3x3 convolution 

for feature extraction. Transition Layers: Each transition 

layer has: 1x1 convolution to reduce dimensions. 

Average Pooling (2x2 kernel, stride 2). Global Average 

Pooling (GAP): Taking the average of all spatial 

features, the output is the vector with the last feature 

length (1024). Fully Connected Layer (Top): Not used 

in include_top=False, as this layer is replaced by a 

custom layer. Additional Layers. Global Average 

Pooling: Simplifies the final output of DenseNet into a 

single feature vector (1024). Fully Connected Layer: 

Dense Layer (128 units): Reduces the dimension of 

features with ReLU activation. Dropout (rate=0.5): 

Randomly deactivates 50% of units to prevent 

overfitting. (Additional layers) Output Layer (Softmax): 

The number of neurons corresponds to the number of 

classes (e.g., train_generator.num_classes). Activation 

of softmax for the probability classification of each 

class. (Additional layers). 

2.4. Evaluation 

Model performance evaluation is performed using 

several standard metrics in a multi-class classification. 

Key metrics used to measure model performance 

include: 

2.4.1. Accuracy 

The model is evaluated using a separate testing dataset 

from the training and validation data. The overall 

accuracy of the model reached 94.59% in classifying 

three types of skin diseases (dermatitis, psoriasis, and 

tinea). This level of accuracy shows the model's good 

ability to distinguish the visual characteristics of the 

three diseases. 

2.4.2. Visual Validation 

Evaluation is also carried out through a visual 

comparison between the original image and the model's 

prediction results, the model is able to maintain 

important visual characteristics of the skin disease 

image when classifying. This indicates that the model 

successfully learned the relevant features to differentiate 

between the three types of diseases. 

2.4.3. Performance Per Class 

The model was tested using a testing dataset consisting 

of 300 images, with the results showing classification 

capabilities in all three classes. Several cases of 

misclassification were identified, where 9 images were 

classified differently from the actual label, but this is 

still within the tolerance limit given the visual 

complexity of the skin disease. 

2.4.4. Model Stability 

The evaluation was carried out using 30 epochs and 3 

layers, showing stable convergence as seen in the 

training and validation graphs. This indicates that the 

model does not experience significant overfitting and is 

able to generalize well on new data. The results of this 

evaluation show that the implemented DenseNet-121 

architecture has promising potential for early diagnosis 

applications of skin diseases, although it still requires 

further validation from medical professionals for 

practical implementation. 

3.  Result and Discussion 

3.1. Layer Number Testing 

The testing process was conducted using a convolutional 

neural network model configured with three layers and 

trained for 30 epochs. The primary goal of this stage is 

to evaluate the model's capability in classifying images 

into three skin disease categories: Tinea, Psoriasis, and 

Dermatitis. 

 

Figure 3. Initial Model Accuracy 
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Figure 3 illustrates the initial accuracy of the model 

before the training began. This baseline reflects the 

model’s performance without any learned parameters 

from the training data essentially a random guess based 

on class distribution. The low accuracy at this stage 

confirms the necessity of training for effective 

classification. 

Figure 4 presents a sample of the original images from 

the dataset. These images have undergone preprocessing 

to enhance contrast and clarity, ensuring that important 

features (lesions, textures, coloration) are more 

prominent for the model to learn during training. 

 

Figure 4. Original Image 

The original images used in the testing process are 

images from datasets that have been processed to make 

it easier for the system to understand the types of skin 

diseases. 

3.2. Test and Analysis Results 

After training, the model was evaluated using a testing 

dataset comprising 300 images. The results revealed that 

the model achieved an overall accuracy of 94.59%, as 

illustrated in Figure 6. This value was calculated as the 

ratio of correct predictions to the total number of 

predictions, indicating a high level of classification 

performance. 

To further assess the model’s capability, Figure 5 

presents a visual comparison of the predicted labels 

(Pred) and the true labels (True) across the three target 

classes: Tinea, Psoriasis, and Dermatitis. The figure 

displays both correctly and incorrectly classified 

samples, providing qualitative insight into the model’s 

decision-making performance. 

These classification results were generated using a 

three-layer model structure, which proved effective in 

identifying most skin disease cases correctly. As 

observed in the figure, the model successfully 

distinguished between the three conditions in the 

majority of the test images, reinforcing its overall 

classification accuracy. 

Despite the overall high performance, 9 out of 300 

images were misclassified, which equates to a 

misclassification rate of approximately 3%. These errors 

mostly occurred between Psoriasis and Dermatitis, 

which are known to exhibit similar visual features such 

as inflammation and scaling. This suggests that while 

the model is robust, certain overlapping characteristics 

among the classes present challenges even for deep 

learning models. Further analysis of feature activation 

maps (Grad-CAM) could help to identify which visual 

cues led to these errors. 

 

Figure 5. Test Results 

Despite these limitations, the achieved accuracy of 

94.59% places this model within a high-performance 

category. For context, previous studies using DenseNet-

121 for similar skin disease classification tasks reported 

accuracies ranging from 90% to 93%. Compared to 

these studies, the performance of our model is 

competitive or slightly improved, likely due to the 

incorporation of data augmentation strategies such as 

rotation, flipping, zooming, and brightness adjustments 

that increased image diversity and reduced overfitting. 

In addition to accuracy, precision, recall, and F1-score 

could provide a more nuanced understanding of model 
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performance per class. These metrics will be computed 

in future experiments to explore class-wise 

performance, especially considering that the cost of 

misclassification in medical contexts can vary 

significantly depending on the disease. 

Overall, this analysis shows that the model is not only 

effective but also resilient across varied input 

conditions. Nevertheless, there is room for 

improvement, especially in reducing confusion between 

visually similar classes, which could be addressed 

through deeper architectures, attention mechanisms, or 

hybrid models combining CNN with transformers. 

 

Figure 6. Model Learning Curve (Accuracy and Loss per Epoch) 

Figure 6 illustrates the learning curve of the model 

during training and validation phases, showing how the 

accuracy and loss values evolved over a series of epochs. 

The left plot presents the model accuracy, while the right 

plot depicts the model loss. 

From the accuracy plot, it is evident that both training 

and validation accuracy increased consistently over 

time, ultimately reaching a validation accuracy of 

94.59%, indicating that the model was able to generalize 

well to unseen data. The relatively small gap between 

the two accuracy curves also suggests minimal 

overfitting. 

The loss plot further supports this conclusion, where 

both training and validation loss steadily decreased over 

epochs. The validation loss curve shows a smooth 

downward trend, reinforcing the stability of the model 

during training. The convergence of both accuracy and 

loss curves demonstrates that the model successfully 

learned discriminative features from the training data 

and maintained robust performance on the validation 

set. 

Overall, Figure 6 provides strong visual evidence that 

the three-layer DenseNet-based model was trained 

effectively and is capable of achieving high 

classification performance with stable learning 

behavior. 

4.  Conclusion 

This study applied a deep learning approach using the 

DenseNet-121 architecture to classify skin diseases 

from image data consisting of 300 samples across three 

classes: dermatitis, psoriasis, and tinea. The model 

achieved a classification accuracy of 94.59%, indicating 

strong potential for automated skin disease diagnosis. 

The results demonstrate that DenseNet-121 is effective 

in distinguishing between the three skin disease types 

and shows promise as an early-stage diagnostic aid. 

However, clinical validation by dermatology experts 

remains essential before deployment in real-world 

medical settings. For future work, it is recommended to 

expand the dataset to include a broader range of skin 

disease categories and to explore more advanced 

evaluation metrics such as precision, recall, and F1-

score. This will help enhance model robustness and 

better reflect diagnostic performance across diverse 

clinical scenarios. 

References  

[1] W. Hary Cahyati, N. Siyam, and Karnowo, “Pengembangan 

Buku ‘Aksi Santri’ Sebagai Upaya Early Detection Penyakit 
Kulit,” Higeia J. Public Heal. Res. Dev., vol. 1, no. 3, pp. 625–

634, 2021, [Online]. Available: 

http://journal.unnes.ac.id/sju/index.php/higeia 

[2] I. N. Cahyawati and I. Budiono, “Faktor yang Berhubungan 

dengan Kejadian Dermatitis Pada Nelayan,” J. Kesehat. Masy., 

vol. 6, no. 2, pp. 134–141, 2011. 

[3] E. S. S. Daili, S. L. Menaldi, and I. M. Wisnu, “Penyakit Kulit 

Yang Umum Di Indonesia: Sebuah Panduan Bergambar,” pp. 

1–107, 2018. 

[4] G. E. P. Purba, S. Hadi Wijoyo, and N. Y. Setiawan, “Pengaruh 

Transfer Learning Resnet Dan DensenetTerhadap Performa 
Klasifikasi Ekspresi WajahMenggunakan Dataset Fer-2013,” 

vol. 1, no. 1, pp. 2548–964, 2017, [Online]. Available: http://j-

ptiik.ub.ac.id 

[5] N. Awalia and A. Primajaya, “Identifikasi Penyakit Leaf Mold 

Daun Tomat Menggunakan Model DenseNet-121,” J. Ilm. Ilmu 

Komput., vol. 8, no. 1, pp. 49–54, 2022, [Online]. Available: 

http://ejournal.fikom-unasman.ac.id 

[6] A. Peryanto, A. Yudhana, and R. Umar, “Klasifikasi Citra 

Menggunakan Convolutional Neural Network dan K Fold 
Cross Validation,” J. Appl. Informatics Comput., vol. 4, no. 1, 

pp. 45–51, 2020, doi: 10.30871/jaic.v4i1.2017. 

[7] R. A. Duila, “The Effect of Artificial Intelligence on 
Productivity and Employment, Literature Review Study,” Pros. 

Semin. Nas. Ilmu Manajamen, Ekon. Keuang. dan Bisnis, vol. 

2, no. 2, pp. 251–260, 2023. 

[8] K. C. Dithia, P. Ristyaning, A. Sangging, and R. Himayani, 

“Skleritis dan Hubungannya dengan Rheumatoid Arthritis 

Scleritis and its Relationship to Rheumatoid Arthritis,” Medula, 

vol. 13, no. 1, pp. 969–973, 2023. 

[9] A. Irma Suryani, T. Rerung, and M. Oktaviani, “A Review: 

Manfaat Madu Lebah Sebagai Pengawet Pada Produk 
Kosmetik,” J. Pharm. Tiara …, vol. 1, pp. 32–37, 2023, 

[Online]. Available: 

https://jurnal.poltektiarabunda.ac.id/index.php/jptb/article/vie

w/19 

[10] Y. W. A. Rustam, Chalifa Chazar, and Moch. Ali Ramdhani, 

“Aplikasi Diagnosa Penyakit Kulit Menggunakan dengan 
Menggunakan Metode Convolutional Neural Networks,” Inf. 

(Jurnal Inform. dan Sist. Informasi), vol. 15, no. 2, pp. 208–

224, 2023, doi: 10.37424/informasi.v15i2.265. 

[11] T. Yuniarti and T. Anggraeni, “Dampak Tempat Pembuangan 

Akhir Sampah Putri Cempo Surakarta Terhadap Penyakit Kulit 

Pada Masyarakat Mojosongo,” J. Ilm. Rekam Medis dan 



 

Mahesa Putra, et al 

 

Journal Medical Informatics Technology − Vol. 3, Iss. 2 (2025) 73-78 

78 

 

 

Inform. Kesehatan, ISSN 2086-2628, vol. 8, no. 1, pp. 26–29, 

2018, [Online]. Available: 

https://www.ejurnalinfokes.apikescm.ac.id/index.php/infokes/

article/view/193/166 

[12] T. Chauhan, H. Palivela, and S. Tiwari, “Optimization and fine-

tuning of DenseNet model for classification of COVID-19 cases 

in medical imaging,” Int. J. Inf. Manag. Data Insights, vol. 1, 

no. 2, p. 100020, 2021, doi: 10.1016/j.jjimei.2021.100020. 

[13] rahayu deny danar dan alvi furwanti Alwie, A. B. Prasetio, R. 

Andespa, P. N. Lhokseumawe, and K. Pengantar, “Tugas Akhir 
Tugas Akhir,” J. Ekon. Vol. 18, Nomor 1 Maret201, vol. 2, no. 

1, pp. 41–49, 2020. 

[14] A. Arkadia, S. Ayu Damayanti, and D. Sandya Prasvita, 
“Klasifikasi Buah Mangga Badami Untuk Menentukan Tingkat 

Kematangan dengan Metode CNN,” Semin. Nas. Mhs. Ilmu 

Komput. dan Apl. Jakarta-Indonesia, vol. 2, no. 2, pp. 158–165, 
2021, [Online]. Available: 

https://conference.upnvj.ac.id/index.php/senamika/article/view

/1813 

[15] R. D. Gottapu and C. H. Dagli, “DenseNet for anatomical brain 

segmentation,” Procedia Comput. Sci., vol. 140, pp. 179–185, 

2018, doi: 10.1016/j.procs.2018.10.327. 

[16] N. Hasan, Y. Bao, A. Shawon, and Y. Huang, “DenseNet 

Convolutional Neural Networks Application for Predicting 

COVID-19 Using CT Image,” SN Comput. Sci., vol. 2, no. 5, 

pp. 1–11, 2021, doi: 10.1007/s42979-021-00782-7. 

[17] M. R. Ashari, Z. Sari, and D. Rizki, “Klasifikasi Kanker Kulit 
Menggunakan Metode Deep Learning,” J. Repos., vol. 6, no. 1, 

pp. 11–16, 2024, doi: 10.22219/repositor.v6i1.29358. 

[18] Supiyandi Supiyandi, Wahyu Eka Judistira, Sepriana Nurliani, 
Rondi Sahputra Darmono, and Inneke Putri, “Penerapan Deep 

Learning dalam Analisis Citra Gigi,” J. Pendidik. Dan Ilmu 

Sos., vol. 2, no. 4, pp. 117–128, 2024, doi: 

10.54066/jupendis.v2i4.2165. 

[19] D. Irfan, R. Rosnelly, M. Wahyuni, J. T. Samudra, and A. 

Rangga, “Perbandingan Optimasi Sgd, Adadelta, Dan Adam 
Dalam Klasifikasi Hydrangea Menggunakan Cnn,” J. Sci. Soc. 

Res., vol. 5, no. 2, p. 244, 2022, doi: 10.54314/jssr.v5i2.789. 

[20] B. Satrio, W. Poetro, S. Mulyono, and V. A. Pramesti, “Prediksi 
Penyakit Batu Ginjal dengan Menerapkan Convolutional 

Neural Network,” pp. 153–162. 

 

 


