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Early detection of cervical cancer is critical for improving
patient outcomes, and accurate classification of Pap smear
images supports clinical decision-making. This study aimed
to improve cervical cancer diagnosis by classifying Pap
smear images using texture features. A dataset of 250 images
across five classes underwent preprocessing including
grayscale conversion and noise removal. Texture features
such as contrast, dissimilarity, homogeneity, energy,
correlation, and Angular Second Moment (ASM) were
extracted using the Gray-Level Co-occurrence Matrix
(GLCM). These features were then used to train and evaluate
machine learning algorithms: Decision Tree (DT), Random
Forest (RF), Gradient Boosting (GB), and Neural Networks
(NN). The Decision Tree model achieved the highest
accuracy of 95%, outperforming Neural Networks which
reached 74%. Ensemble methods like RF and GB showed
robust performance across classes. These results demonstrate
the effectiveness of GLCM-based feature extraction
combined with Decision Tree classification for accurate and
reliable Pap smear image analysis. This approach offers
valuable insights for enhancing clinical decision support in

cervical cancer diagnosis.

1. Introduction

Early detection of cervical cancer is crucial for
effective treatment and improved patient outcomes.
Accurate classification of Pap smear images plays a
key role in supporting clinical decision-making and
reducing diagnostic errors. However, medical image
classification, particularly for Pap smear slides,
remains a challenging task due to variations in cell
morphology and image quality.

Random Forest is an ensemble method generating
multiple decision trees during training and employing
class mode for classification. It has been shown to
outperform  traditional algorithms like logistic
regression and support vector machines, especially on
complex, high-dimensional datasets. Previous studies
have also demonstrated higher AUC values for RF
compared to other models [1], [2], [3]. RF's ability to
reduce overfitting through bagging and its robustness
to noisy data make it a preferred choice in clinical
applications [4], [5].

Gradient Boosting builds models sequentially, with
each new model correcting errors made by the previous
one. It is known for its high predictive accuracy across

various domains, including healthcare. For instance,
gradient boosting has proven effective in predicting
cardiac surgery outcomes and other medical conditions,
solidifying its reliability in clinical settings [6], [3].
GB's performance comparable to RF in this study is
consistent with previous research showing that both
algorithms can yield high accuracy and AUC scores in
complex classification tasks [7], [8].

Decision Trees are machine learning algorithms used
for classification and regression. They create tree-like
models resembling flowcharts. Each branch represents
a data attribute, and each leaf represents a class or
predicted value. Pap smear image classification is
crucial for early cervical cancer detection. Decision
Trees, as part of machine learning techniques, have
demonstrated significant potential in improving
accuracy and efficiency in classifying cervical cells [9].

Neural Networks (NN), while highly capable of
modeling complex and non-linear relationships in
unstructured data such as images, typically require
large, diverse, and balanced datasets to achieve optimal
performance. These models rely on extensive amounts
of training data to effectively learn feature

117


https://doi.org/10.37034/medinftech.v3i3.85

Rano Agustino and Prima Nanda Fauziah

representations and generalize well to unseen data.
When datasets are limited in size or imbalanced, as is
often the case in medical image analysis, the learning
process can be significantly constrained, leading to
suboptimal accuracy and potential overfitting. In the
present study, NN achieved only 74% accuracy, which
reflects these inherent limitations. The relatively small
size of the dataset, combined with the high variability
among Pap smear images, posed substantial challenges
in training the deep learning models. These challenges
underscore the importance of dataset quality and
quantity when applying NN to medical diagnostics and
highlight the need for careful consideration when
interpreting the performance of such models in clinical
applications [10], [11], [12].

The dataset comprised 250 Pap smear images
categorized into five classes: Normal, H-Sil, Koilocyte,
Normal Non-ThinPrep, and L-Sil Non-ThinPrep.
Preprocessing included grayscale conversion and noise
removal to enhance data quality for machine learning
[13]. The Gray-Level Co-occurrence Matrix (GLCM)
was used to extract texture features, including Contrast,
Dissimilarity, Homogeneity, Energy, Correlation, and
Angular Second Moment (ASM) [14], which were then
used to train RF, GB, DT, and NN models.

Results showed that DT achieved 95% accuracy, while
RF and GB reached 92% with AUC scores of 0.94 and
0.95, respectively. This highlights DT's effectiveness in
distinguishing classes. The AUC metric is highly
relevant in medical diagnostics as it reflects overall
model performance across different classification
thresholds [15], [16]. These findings support previous
research consistently reporting high AUC scores for RF
and GB in various medical prediction tasks [17].

Previous research [18], [19] primarily focused on fewer
classes and a smaller set of texture features, often using
deep learning models like VGG16, VGG19, AlexNet,
and ResNet50. This study addresses these gaps by
adding the ASM feature to the GLCM feature set and
expanding the classification task to five classes. These
enhancements improve the representation of cervical
cell variations, while the comparative evaluation of

four algorithms highlights the strengths and
weaknesses of each approach. The findings,
particularly the high accuracy achieved by Decision
Tree, demonstrate the novelty and potential

contribution of this study to the development of
automated cervical cancer detection methods, which
could inform future clinical decision-making processes.

Previous studies on Pap smear image classification
were generally limited to fewer classes and a small set
of texture features. This research addresses these gaps
by adding the Angular Second Moment (ASM) feature
to the GLCM feature set and expanding the
classification task to five classes. These enhancements
improve the representativeness of cervical cell
variations, while the comparative evaluation of four
algorithms highlights the strengths and weaknesses of

each approach [20]. The findings, particularly the high
accuracy achieved by the Decision Tree model,
demonstrate the novelty and potential contribution of
this study to automated cervical cancer detection.

In summary, this study compares four machine
learning algorithms: Random Forest, Gradient
Boosting, Decision Tree, and Neural Networks for Pap
smear image classification. The results indicate that DT
achieved the highest accuracy (95%), followed by RF
and GB (92%), while NN reached 74%, thereby
emphasizing the differences in performance among
these approaches.

2. Research Method
2.1. Research Methodology

The methodology employed in this research involved a
systematic approach to classify Pap smear images
using four machine learning algorithms: Random
Forest (RF), Gradient Boosting (GB), Decision Tree
(DT), and Neural Networks (NN). The research was
structured into several sequential phases: dataset
preparation, data preprocessing, feature extraction,
model training, and evaluation. Each phase was
designed to ensure data quality and reliable model
development. The following diagram illustrates the
overall research workflow:

3 :j Tl Preprocessing Data

MODELING

EVALUASI
Figure 1. Business Process
2.2. Dataset Preparation

As depicted in the Business Process diagram, the initial
step involves dataset preparation. The dataset utilized
in this study consists of 250 Pap smear images sourced
from the RepoMedUNM database. These images are
categorized into five distinct classes: Normal, H-Sil,
Koilocyt, Normal Non-ThinPrep, and L-Sil Non-
ThinPrep, with each class containing 50 images. The
selection of this dataset is crucial as it provides a
balanced representation of various cervical cell types,
which is essential for training robust classification
models [21]. Figure 2. Presented below are images of
the various classes or categories present in the Pap
smear dataset.
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Figure 2. Dataset Image Pap Smear
2.3. Data Preprocessing

Data preprocessing is a critical step in preparing
images for analysis. In this study, preprocessing was
performed using Python, involving grayscale
conversion and noise removal. Grayscale conversion
simplifies image data, reducing input complexity while
preserving  essential ~ features  necessary  for
classification. Noise removal enhances image quality,
which is crucial for accurate feature extraction and
subsequent processing stages [22], [23]. These
preprocessing steps align with best practices in medical
image analysis, as they help to mitigate the impact of
artifacts and improve the overall quality of the dataset
[24]. Figure 3 presented are visualizations of the data
preprocessing stages.
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Figure 3. Preprocessing Data Image
2.4. Feature Extraction

Feature extraction was conducted using the Gray-Level
Co-occurrence Matrix (GLCM) technique, which is
well-suited for image processing to capture texture
features. GLCM generates a matrix describing the
spatial relationship between pixels, allowing for the
extraction of important features such as Contrast,
Dissimilarity, Homogeneity, Energy, Correlation, and
Second Angular Moment (ASM) [25], [26]. This
structured approach to feature extraction is essential for
enabling algorithms to learn and differentiate between
various classes effectively [27], [28].

2.5. Modeling

The extracted features were used to train four machine
learning algorithms: Random Forest (RF), Gradient
Boosting (GB), Decision Tree (DT), and Neural
Networks (NN). Random Forest builds multiple
decision trees and aggregates their outputs to improve
generalization and reduce overfitting. Gradient
Boosting constructs models sequentially, where each
model corrects the errors of its predecessor. Decision
Tree creates a hierarchical structure of nodes and
branches to classify data based on attribute values.
Neural Networks, inspired by the structure of the
human brain, consist of layers of interconnected nodes
that can model non-linear relationships in the data.
The training process included hyper parameter
optimization and evaluation procedures to ensure each
algorithm was fitted appropriately for the dataset [29],
[30]. Neural Networks, particularly deep learning
architectures, were also employed in this study,
although they generally require larger datasets to
achieve optimal performance [31], [32]. The training
process involved hyperparameter optimization and
ensuring that each model adequately fit the training
data.

2.6. Evaluation

Model performance was evaluated using the Confusion
Matrix and the Area Under the Curve — Receiver
Operating Characteristic Curve (AUC-ROC). The
Confusion Matrix provides detailed insights into class-
level performance through metrics such as precision,
recall, F1-score, and overall accuracy, allowing
evaluation of how well the model classifies each Pap
smear category. Meanwhile, the AUC-ROC is a
threshold-independent metric that reflects the model’s
discriminative ability across all classes, offering a more
comprehensive perspective compared to accuracy
alone. These evaluation methods are particularly
crucial in medical image analysis, where distinguishing
between normal and abnormal samples has direct
clinical implications [31], [32].

3. Result and Discussion
3.1. Feature Extraction Results

The feature extraction process was carried out using
the Gray Level Co-occurrence Matrix (GLCM) method
to obtain texture-based characteristics from Pap smear
images. The extracted features were then compiled into
a structured dataset and stored in a CSV file named
glem_features_all.csv. This dataset consists of six
texture descriptors, namely Contrast, Dissimilarity,
Homogeneity, Energy, Correlation, and Angular
Second Moment (ASM), along with their respective
class labels. An example of the extracted features is
presented in Table 1, which demonstrates the
numerical values of each descriptor across sample
images labeled as “Normal.”
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Table 1. Example of Feature Extraction Dataset

Contra Dissimi  Homog  Energ  Correl AS  Clas
st larity eneity y ation M S
19823 0.6129 0.78150 0.1195 0.9990 0.01  Nor
89322 13479 4427 0127 7345 4280 mal

6
0.9666  0.3623 0.85912 0.1539 0.9987 0.02 Nor
26205 80543 9834 7578 4062 3708 mal
5
0.7273  0.3051 0.87870 0.1987 0.9991 0.03 Nor
23236 46683 1147 3074 6057 9493 mal
9
0.6962  0.3042 0.87823 0.1951 0.9991 0.03 Nor
47814 69724 6646 0198 9274 8064 mal
8
10677 0.3861 0.85293 0.1846 0.9992 0.03 Nor
71899 13164 7005 604 1606 4099 mal
5
To facilitate interpretation, the distributions and

pairwise relationships among the extracted features are
visualized in Figure 2. These figures provide insight
into how each feature behaves across different classes
(Normal, H-SIL, L-SIL, Koilocyte, and Normal-NT).

Based on the pair plot visualization in Figure 2, several
important observations can be made regarding the
distribution and relationships of the extracted GLCM
features:

1. Patterns and Clusters Between Classes
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Normal (Green): This class exhibits a distinct pattern
compared to others, particularly in features like
Contrast and Homogeneity, where Contrast values are
higher and Homogeneity values are lower.

H-SIL (Red) and L-SIL (Purple): These classes appear
to share some similarities but still exhibit differences in
feature distributions such as ASM and Energy.

Koilocyte (Orange): This class has a unique
distribution pattern in features like Correlation and
Dissimilarity, but its data points are relatively fewer.

Normal-NT (Blue): Generally, it has a feature
distribution similar to Normal but spreads slightly
wider in some features.

2. Feature Value Distribution

Contrast: This feature shows a wider range of values
compared to other features, with the Normal class
dominating at higher values.

Homogeneity and Energy: These features tend to
cluster at high values for most classes, but with some
variation for abnormal classes like H-SIL.

ASM and Correlation: These features have a very
narrow range of values, which may be less informative
for class discrimination when used alone.
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Figure 2. Pair Plot of Extracted Features
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3. Feature Correlations

There is a clear negative correlation between
Homogeneity and Contrast: high Homogeneity values
tend to correspond to low Contrast values, especially
for the Normal class.

Energy and ASM seem to have a strong positive
correlation, where an increase in one feature is closely
related to an increase in the other for all classes.

Some features, like Correlation, do not show strong
correlations with other features, indicating that they
might be less informative.

4.  Feature Discriminative Power

Features like Contrast, Homogeneity, and Energy seem
to have good discriminative power in separating the
Normal class from abnormal classes (H-SIL, L-SIL,
Koilocyte).

Features like Correlation and ASM, due to their narrow
value range, may have a smaller contribution to class
discrimination when used independently.

3.2. Model Performance Evaluation

As shown in Table 2, both Random Forest (RF) and
Gradient Boosting (GB) achieved an accuracy of 92%,
while Neural Network (NN) obtained the lowest
accuracy at 74%. In contrast, Decision Tree (DT)
recorded the highest accuracy of 95%.

Table 2. Confussion Matrix

Model Class Precisi Reca  F1- Suppo  Accu
on 1l Scor 1t racy
e
Rando 0 096 092 094 50 092
m 1 096 098 0.97 50
Forest 2 0.86 0.88 0.87 50
3 094 094 094 50
4 090 0.90 0.9 50
Macro 092 092 092 250
Avg
Weight 092 092 0.92 250
ed Avg
Gradie 0 096 096 0.96 50 0.92
nt 1 096 098 097 50
Boosti 2 088 086 087 50
ng 3 092 094 093 50
4 090 0.88 0.89 50
Macro 092 092 092 250
Avg
Weight 092 092 0.92 250
ed Avg
Decisio 0 094 09 0,95 50 095
n Tree 1 0,98 0,98 0,98 50
2 092 092 0,92 50
3 094 096 0,95 50
4 09 092 094 50
Macro 09 095 0,95 250
Avg
Weight 095 095 0,95 250
ed Avg
Neural 0 0.78 0.78 0.78 50 0.74
Networ 1 081 094 087 50
k 2 060 0.66 0.63 50

3 078 076 077 50
4 076 058 0.66 50
Macro 075 074 074 250
Avg
Weight 075 074 074 250
ed Avg
Furthermore, the AUC scores indicate the

discriminative power of the models, with RF achieving
0.90, GB reaching 0.88, DT scoring 0.76, and NN
obtaining 0.83. The following Table 3 and Figure 3
presents the AUC-ROC values for this study.

Table 3. AUC-ROC

Clas Random Gradient Decisio Neural
S Forest AUC  Boosting AUC n Tree Network
AUC
0 0.9100 0.8700 0.7600 0.8200
1 0.9600 0.9400 0.8900 0.9300
2 0.8700 0.8500 0.6600 0.8300
3 0.8900 0.8900 0.7400 0.7600
Aver 0.9075 0.8875 0.7625 0.8350
age

Receiver Operating Characteristic (ROC) Curve Comparison (Excluding Class Normal-NT)

True Positive Rate

€ Class H-il (AUC = 0.76)
e Class Koilocyt (AUC = 0.89)
e Class L-Sil (AUC = 0.66)
€ Class Normal (AUC = 0.74)
rest Class H-5il (AUC = 0.91)
rest Class Koilocyt (AUC = 0.96)
rest Class L-Sil (AUC = 0.87)
Random Forest Class Normal (AUC = 0.89)
XGBoost Class H-Sil (AUC = 0.87)
XGBoost Class Koilocyt (AUC = 0,94)

AU

il (AUC = 0.82)
jocyt (AUC = 0.93)
I (AUC = 0.83)
Neural Network Class Normal (AUC = 0.76)

0o 02 0a 06 038 10
False Positive Rate

Figure 3. AUC-ROC Curve

An interesting finding from this study is the
performance discrepancy of the Decision Tree (DT)
model. While DT achieved the highest overall accuracy
(95%), it also obtained the lowest average AUC score
(0.76) compared to Random Forest (0.90), Gradient
Boosting (0.88), and Neural Networks (0.83). This
indicates that DT classified most samples correctly, but
its ability to consistently distinguish between all classes
was weaker than ensemble methods such as RF and
GB.

Further analysis of the confusion matrix (Table 2)
shows that DT reached very high precision and recall
for certain classes (e.g., 0.98 for Class 1), which
contributed to its high accuracy, but its performance
dropped for others (e.g., 0.92 for Class 2). The AUC-
ROC visualization (Figure 3) reinforces this finding by
showing that DT’s ROC curves are less consistent
across classes compared to RF and GB, whose curves
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lie closer to the top-left corner, indicating stronger
class separability.

In the context of medical diagnostics, this discrepancy
highlights the importance of evaluating models not
only by accuracy but also by AUC. Accuracy reflects
the overall proportion of correct classifications, while
AUC provides a more comprehensive measure of a
model’s discriminative power across all classes, which
is especially critical when distinguishing between
normal and abnormal Pap smear samples. Beyond the
performance of DT, it is also important to examine
how other models behaved in terms of Accuracy and
AUC, as these metrics provide a broader perspective on
model effectiveness. The AUC scores for RF and GB
were 0.90 and 0.88, respectively, indicating strong
discriminative power. Conversely, the NN model, with
an AUC of 0.83, while still reasonably good, highlights
the challenges faced by deep learning models when
trained on smaller datasets [33]. These findings align
with previous research that has reported similar
performance levels for RF and GB in various
classification tasks, reinforcing their status as robust
algorithms for medical image analysis [34], [35].

3.2. Decision Tree Performance

The Decision Tree (DT) algorithm demonstrated the
highest classification accuracy in this study, achieving
95% as shown in Table 2. This strong performance can
be attributed to its straightforward rule-based structure,
which enables the model to capture clear decision
boundaries in the dataset. In particular, DT exhibited
very high precision and recall for certain classes (e.g.,
0.98 for Class 1), contributing significantly to its
overall accuracy.

However, despite its high accuracy, DT achieved the
lowest average AUC score (0.76) compared to other
algorithms (Table 3 and Figure 3). This discrepancy
suggests that while DT can correctly classify a large
proportion of samples, its ability to consistently
discriminate between all classes is weaker than
ensemble-based methods such as Random Forest and
Gradient Boosting. For instance, DT tended to perform
well on classes with distinct feature patterns but
showed performance drops in classes with overlapping
feature distributions (e.g., 0.92 for Class 2).

This result highlights an important characteristic of DT
models: they are prone to overfitting when dealing with
complex datasets, which can lead to high accuracy but
reduced generalization in terms of discriminative
ability. Nevertheless, the simplicity and interpretability
of DT make it attractive for medical diagnostics, as its
rule-based structure allows clinicians to trace decision
paths and understand classification outcomes.

3.2. Random Forest
Performance

and Gradient Boosting

The superior performance of RF and GB can be
attributed to their ensemble learning techniques, which

combine multiple weak predictions to produce a strong
predictive model. RF builds multiple decision trees and
aggregates their outputs, effectively reducing
overfitting and improving generalization [36]. GB, on
the other hand, builds models sequentially, focusing on
correcting errors from previous iterations, allowing it
to adaptively improve performance with each
additional tree [37]. This adaptability is particularly
beneficial in medical diagnostics, where the complexity
and variability of data can significantly impact
classification accuracy. The results of this study
support findings from other research that has
demonstrated the effectiveness of RF and GB in
medical image classification tasks. For instance,
studies have shown that RF consistently outperforms
traditional classification, achieving higher accuracy
and AUC scores in various applications, including
medical imaging [38], [39]. Similarly, GB has been
recognized for its high predictive accuracy in various
domains, including healthcare, where it has been
successfully applied to predict patient outcomes and
disease progression [40].

3.3. Neural Network Performance

The lower accuracy of NN in this study highlights the
challenges associated with training deep learning
models on limited datasets. Although NNs have
demonstrated remarkable success in various image
classification tasks, especially in scenarios with large
amounts of labeled data, their performance can be
hindered when datasets are small or imbalanced [41],
[42]. This observation is consistent with the existing
literature, which suggests that deep learning models
often require extensive training data to achieve optimal
performance. Despite these limitations, the potential of
NNs in medical image classification remains
significant, especially as larger and more diverse
datasets become available for training.

3.4. Implications for Medical Diagnostics

The findings of this study have significant implications
for the field of medical diagnostics, particularly in the
context of cervical cancer detection. The high accuracy
achieved by DT indicates that this algorithm can be
effectively integrated into clinical decision support
systems to assist pathologists in analyzing Pap smear
images. By providing accurate and reliable
classifications, this model can improve the efficiency
of cervical cancer screening programs and enhance
patient outcomes. Moreover, these results highlight the
importance of selecting the appropriate classification
algorithm based on the characteristics of the dataset
and the specific requirements of the classification task.
As the field of medical image analysis continues to
evolve, the integration of ensemble methods like DT
with more recent techniques such as hybrid models
may further improve accuracy.
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4. Conclusion

This study demonstrates that the Decision Tree (DT)
algorithm achieved the highest accuracy (95%) in
classifying Pap smear images, although its
discriminative ability, reflected by the AUC score, was
lower than that of ensemble methods such as Random
Forest and Gradient Boosting. These findings suggest
that while DT offers simplicity and interpretability,
ensemble models provide more consistent class
separability. Neural Networks, in contrast, exhibited
lower performance due to the limited dataset but
remain promising for medical image classification
when larger datasets are available.

This study has several limitations. The dataset size was
relatively small (250 images), which may limit
generalizability. The Neural Network model did not
perform optimally due to the limited data size, and the
study only relied on GLCM-based texture features
without exploring other descriptors such as
morphological or deep learning-based features. These
limitations indicate that the reported results should be
interpreted with caution, particularly for broader
clinical applications.

Future research should therefore focus on addressing
these limitations. Expanding the dataset with larger and
more diverse Pap smear images, integrating deep
learning approaches (e.g., CNN and transfer learning)
with handcrafted features, and developing hybrid or
ensemble models that combine interpretable algorithms
(such as Decision Tree) with more powerful learners
(such as Neural Networks) are promising directions.
Validating the proposed methods using real-world
clinical data will also be essential to ensure reliability

and applicability in practical cervical cancer screening.
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