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Early detection of cervical cancer is critical for improving 

patient outcomes, and accurate classification of Pap smear 

images supports clinical decision-making. This study aimed 

to improve cervical cancer diagnosis by classifying Pap 

smear images using texture features. A dataset of 250 images 

across five classes underwent preprocessing including 

grayscale conversion and noise removal. Texture features 

such as contrast, dissimilarity, homogeneity, energy, 

correlation, and Angular Second Moment (ASM) were 

extracted using the Gray-Level Co-occurrence Matrix 

(GLCM). These features were then used to train and evaluate 

machine learning algorithms: Decision Tree (DT), Random 

Forest (RF), Gradient Boosting (GB), and Neural Networks 

(NN). The Decision Tree model achieved the highest 

accuracy of 95%, outperforming Neural Networks which 

reached 74%. Ensemble methods like RF and GB showed 

robust performance across classes. These results demonstrate 

the effectiveness of GLCM-based feature extraction 

combined with Decision Tree classification for accurate and 

reliable Pap smear image analysis. This approach offers 

valuable insights for enhancing clinical decision support in 

cervical cancer diagnosis. 
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1. Introduction 

Early detection of cervical cancer is crucial for 

effective treatment and improved patient outcomes. 

Accurate classification of Pap smear images plays a 

key role in supporting clinical decision-making and 

reducing diagnostic errors. However, medical image 

classification, particularly for Pap smear slides, 

remains a challenging task due to variations in cell 

morphology and image quality.  

Random Forest is an ensemble method generating 

multiple decision trees during training and employing 

class mode for classification. It has been shown to 

outperform traditional algorithms like logistic 

regression and support vector machines, especially on 

complex, high-dimensional datasets. Previous studies 

have also demonstrated higher AUC values for RF 

compared to other models [1], [2], [3]. RF's ability to 

reduce overfitting through bagging and its robustness 

to noisy data make it a preferred choice in clinical 

applications [4], [5]. 

Gradient Boosting builds models sequentially, with 

each new model correcting errors made by the previous 

one. It is known for its high predictive accuracy across 

various domains, including healthcare. For instance, 

gradient boosting has proven effective in predicting 

cardiac surgery outcomes and other medical conditions, 

solidifying its reliability in clinical settings [6], [3]. 

GB's performance comparable to RF in this study is 

consistent with previous research showing that both 

algorithms can yield high accuracy and AUC scores in 

complex classification tasks [7], [8]. 

Decision Trees are machine learning algorithms used 

for classification and regression. They create tree-like 

models resembling flowcharts. Each branch represents 

a data attribute, and each leaf represents a class or 

predicted value. Pap smear image classification is 

crucial for early cervical cancer detection. Decision 

Trees, as part of machine learning techniques, have 

demonstrated significant potential in improving 

accuracy and efficiency in classifying cervical cells [9].  

Neural Networks (NN), while highly capable of 

modeling complex and non-linear relationships in 

unstructured data such as images, typically require 

large, diverse, and balanced datasets to achieve optimal 

performance. These models rely on extensive amounts 

of training data to effectively learn feature 
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representations and generalize well to unseen data. 

When datasets are limited in size or imbalanced, as is 

often the case in medical image analysis, the learning 

process can be significantly constrained, leading to 

suboptimal accuracy and potential overfitting. In the 

present study, NN achieved only 74% accuracy, which 

reflects these inherent limitations. The relatively small 

size of the dataset, combined with the high variability 

among Pap smear images, posed substantial challenges 

in training the deep learning models. These challenges 

underscore the importance of dataset quality and 

quantity when applying NN to medical diagnostics and 

highlight the need for careful consideration when 

interpreting the performance of such models in clinical 

applications [10], [11], [12]. 

The dataset comprised 250 Pap smear images 

categorized into five classes: Normal, H-Sil, Koilocyte, 

Normal Non-ThinPrep, and L-Sil Non-ThinPrep. 

Preprocessing included grayscale conversion and noise 

removal to enhance data quality for machine learning 

[13]. The Gray-Level Co-occurrence Matrix (GLCM) 

was used to extract texture features, including Contrast, 

Dissimilarity, Homogeneity, Energy, Correlation, and 

Angular Second Moment (ASM) [14], which were then 

used to train RF, GB, DT, and NN models. 

Results showed that DT achieved 95% accuracy, while 

RF and GB reached 92% with AUC scores of 0.94 and 

0.95, respectively. This highlights DT's effectiveness in 

distinguishing classes. The AUC metric is highly 

relevant in medical diagnostics as it reflects overall 

model performance across different classification 

thresholds [15], [16]. These findings support previous 

research consistently reporting high AUC scores for RF 

and GB in various medical prediction tasks [17]. 

Previous research [18], [19] primarily focused on fewer 

classes and a smaller set of texture features, often using 

deep learning models like VGG16, VGG19, AlexNet, 

and ResNet50. This study addresses these gaps by 

adding the ASM feature to the GLCM feature set and 

expanding the classification task to five classes. These 

enhancements improve the representation of cervical 

cell variations, while the comparative evaluation of 

four algorithms highlights the strengths and 

weaknesses of each approach. The findings, 

particularly the high accuracy achieved by Decision 

Tree, demonstrate the novelty and potential 

contribution of this study to the development of 

automated cervical cancer detection methods, which 

could inform future clinical decision-making processes. 

Previous studies on Pap smear image classification 

were generally limited to fewer classes and a small set 

of texture features. This research addresses these gaps 

by adding the Angular Second Moment (ASM) feature 

to the GLCM feature set and expanding the 

classification task to five classes. These enhancements 

improve the representativeness of cervical cell 

variations, while the comparative evaluation of four 

algorithms highlights the strengths and weaknesses of 

each approach [20]. The findings, particularly the high 

accuracy achieved by the Decision Tree model, 

demonstrate the novelty and potential contribution of 

this study to automated cervical cancer detection. 

In summary, this study compares four machine 

learning algorithms: Random Forest, Gradient 

Boosting, Decision Tree, and Neural Networks for Pap 

smear image classification. The results indicate that DT 

achieved the highest accuracy (95%), followed by RF 

and GB (92%), while NN reached 74%, thereby 

emphasizing the differences in performance among 

these approaches. 

2. Research Method 

2.1. Research Methodology 

The methodology employed in this research involved a 

systematic approach to classify Pap smear images 

using four machine learning algorithms: Random 

Forest (RF), Gradient Boosting (GB), Decision Tree 

(DT), and Neural Networks (NN). The research was 

structured into several sequential phases: dataset 

preparation, data preprocessing, feature extraction, 

model training, and evaluation. Each phase was 

designed to ensure data quality and reliable model 

development. The following diagram illustrates the 

overall research workflow: 

 

Figure 1.  Business Process 

2.2. Dataset Preparation  

As depicted in the Business Process diagram, the initial 

step involves dataset preparation. The dataset utilized 

in this study consists of 250 Pap smear images sourced 

from the RepoMedUNM database. These images are 

categorized into five distinct classes: Normal, H-Sil, 

Koilocyt, Normal Non-ThinPrep, and L-Sil Non-

ThinPrep, with each class containing 50 images. The 

selection of this dataset is crucial as it provides a 

balanced representation of various cervical cell types, 

which is essential for training robust classification 

models [21]. Figure 2. Presented below are images of 

the various classes or categories present in the Pap 

smear dataset. 
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Normal  (50)         H-Sil (50)                   Koilocyt (50) 
 

                     
Normal Non Thinprep (50)      L-Sl Non Thinprep (50) 

 

Figure 2. Dataset Image Pap Smear 

2.3. Data Preprocessing  

Data preprocessing is a critical step in preparing 

images for analysis. In this study, preprocessing was 

performed using Python, involving grayscale 

conversion and noise removal. Grayscale conversion 

simplifies image data, reducing input complexity while 

preserving essential features necessary for 

classification. Noise removal enhances image quality, 

which is crucial for accurate feature extraction and 

subsequent processing stages [22], [23]. These 

preprocessing steps align with best practices in medical 

image analysis, as they help to mitigate the impact of 

artifacts and improve the overall quality of the dataset 

[24]. Figure 3 presented are visualizations of the data 

preprocessing stages. 

 

Figure 3. Preprocessing Data Image 

2.4. Feature Extraction  

Feature extraction was conducted using the Gray-Level 

Co-occurrence Matrix (GLCM) technique, which is 

well-suited for image processing to capture texture 

features. GLCM generates a matrix describing the 

spatial relationship between pixels, allowing for the 

extraction of important features such as Contrast, 

Dissimilarity, Homogeneity, Energy, Correlation, and 

Second Angular Moment (ASM) [25], [26]. This 

structured approach to feature extraction is essential for 

enabling algorithms to learn and differentiate between 

various classes effectively [27], [28]. 

 

2.5. Modeling 

The extracted features were used to train four machine 

learning algorithms: Random Forest (RF), Gradient 

Boosting (GB), Decision Tree (DT), and Neural 

Networks (NN). Random Forest builds multiple 

decision trees and aggregates their outputs to improve 

generalization and reduce overfitting. Gradient 

Boosting constructs models sequentially, where each 

model corrects the errors of its predecessor. Decision 

Tree creates a hierarchical structure of nodes and 

branches to classify data based on attribute values. 

Neural Networks, inspired by the structure of the 

human brain, consist of layers of interconnected nodes 

that can model non-linear relationships in the data. 

The training process included hyper parameter 

optimization and evaluation procedures to ensure each 

algorithm was fitted appropriately for the dataset [29], 

[30]. Neural Networks, particularly deep learning 

architectures, were also employed in this study, 

although they generally require larger datasets to 

achieve optimal performance [31], [32]. The training 

process involved hyperparameter optimization and 

ensuring that each model adequately fit the training 

data. 

2.6. Evaluation 

Model performance was evaluated using the Confusion 

Matrix and the Area Under the Curve – Receiver 

Operating Characteristic Curve (AUC-ROC). The 

Confusion Matrix provides detailed insights into class-

level performance through metrics such as precision, 

recall, F1-score, and overall accuracy, allowing 

evaluation of how well the model classifies each Pap 

smear category. Meanwhile, the AUC-ROC is a 

threshold-independent metric that reflects the model’s 

discriminative ability across all classes, offering a more 

comprehensive perspective compared to accuracy 

alone. These evaluation methods are particularly 

crucial in medical image analysis, where distinguishing 

between normal and abnormal samples has direct 

clinical implications [31], [32]. 

3.  Result and Discussion 

3.1. Feature Extraction Results 

The feature extraction process was carried out using 

the Gray Level Co-occurrence Matrix (GLCM) method 

to obtain texture-based characteristics from Pap smear 

images. The extracted features were then compiled into 

a structured dataset and stored in a CSV file named 

glcm_features_all.csv. This dataset consists of six 

texture descriptors, namely Contrast, Dissimilarity, 

Homogeneity, Energy, Correlation, and Angular 

Second Moment (ASM), along with their respective 

class labels. An example of the extracted features is 

presented in Table 1, which demonstrates the 

numerical values of each descriptor across sample 

images labeled as “Normal.” 
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Table 1. Example of Feature Extraction Dataset 

Contra

st 

Dissimi

larity 

Homog

eneity 

Energ

y 

Correl

ation 

AS

M 

Clas

s 

1.9823

89322 

0.6129

13479 

0.78150

4427 

0.1195

0127 

0.9990

7345 

0.01

4280
6 

Nor

mal 

0.9666

26205 

0.3623

80543 

0.85912

9834 

0.1539

7578 

0.9987

4062 

0.02

3708
5 

Nor

mal 

0.7273

23236 

0.3051

46683 

0.87870

1147 

0.1987

3074 

0.9991

6057 

0.03

9493
9 

Nor

mal 

0.6962

47814 

0.3042

69724 

0.87823

6646 

0.1951

0198 

0.9991

9274 

0.03

8064
8 

Nor

mal 

1.0677

71899 

0.3861

13164 

0.85293

7005 

0.1846

604 

0.9992

1606 

0.03

4099
5 

Nor

mal 

To facilitate interpretation, the distributions and 

pairwise relationships among the extracted features are 

visualized in Figure 2. These figures provide insight 

into how each feature behaves across different classes 

(Normal, H-SIL, L-SIL, Koilocyte, and Normal-NT). 

Based on the pair plot visualization in Figure 2, several 

important observations can be made regarding the 

distribution and relationships of the extracted GLCM 

features: 

1. Patterns and Clusters Between Classes 

Normal (Green): This class exhibits a distinct pattern 

compared to others, particularly in features like 

Contrast and Homogeneity, where Contrast values are 

higher and Homogeneity values are lower. 

H-SIL (Red) and L-SIL (Purple): These classes appear 

to share some similarities but still exhibit differences in 

feature distributions such as ASM and Energy. 

Koilocyte (Orange): This class has a unique 

distribution pattern in features like Correlation and 

Dissimilarity, but its data points are relatively fewer. 

Normal-NT (Blue): Generally, it has a feature 

distribution similar to Normal but spreads slightly 

wider in some features. 

2. Feature Value Distribution 

Contrast: This feature shows a wider range of values 

compared to other features, with the Normal class 

dominating at higher values. 

Homogeneity and Energy: These features tend to 

cluster at high values for most classes, but with some 

variation for abnormal classes like H-SIL. 

ASM and Correlation: These features have a very 

narrow range of values, which may be less informative 

for class discrimination when used alone. 

 

Figure 2. Pair Plot of Extracted Features 
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3. Feature Correlations 

There is a clear negative correlation between 

Homogeneity and Contrast: high Homogeneity values 

tend to correspond to low Contrast values, especially 

for the Normal class. 

Energy and ASM seem to have a strong positive 

correlation, where an increase in one feature is closely 

related to an increase in the other for all classes. 

Some features, like Correlation, do not show strong 

correlations with other features, indicating that they 

might be less informative. 

4. Feature Discriminative Power 

Features like Contrast, Homogeneity, and Energy seem 

to have good discriminative power in separating the 

Normal class from abnormal classes (H-SIL, L-SIL, 

Koilocyte). 

Features like Correlation and ASM, due to their narrow 

value range, may have a smaller contribution to class 

discrimination when used independently. 

3.2. Model Performance Evaluation 

As shown in Table 2, both Random Forest (RF) and 

Gradient Boosting (GB) achieved an accuracy of 92%, 

while Neural Network (NN) obtained the lowest 

accuracy at 74%. In contrast, Decision Tree (DT) 

recorded the highest accuracy of 95%. 

Table 2. Confussion Matrix 

Model Class Precisi

on 

Reca

ll 

F1-

Scor
e 

Suppo

rt 

Accu

racy 

Rando

m 

Forest 

0 0.96 0.92 0.94 50 0.92 

1 0.96 0.98 0.97 50 

2 0.86 0.88 0.87 50 
3 0.94 0.94 0.94 50 

4 0.90 0.90 0.90 50 

Macro 
Avg 

0.92 0.92 0.92 250 

Weight

ed Avg 

0.92 0.92 0.92 250 

       

Gradie

nt 
Boosti

ng 

0 0.96 0.96 0.96 50 0.92 

1 0.96 0.98 0.97 50 
2 0.88 0.86 0.87 50 

3 0.92 0.94 0.93 50 

4 0.90 0.88 0.89 50 
Macro 

Avg 

0.92 0.92 0.92 250 

Weight

ed Avg 

0.92 0.92 0.92 250 

       
Decisio

n Tree 

0 0,94 0,96 0,95 50 0.95 

1 0,98 0,98 0,98 50 

2 0,92 0,92 0,92 50 
3 0,94 0,96 0,95 50 

4 0,96 0,92 0,94 50 

Macro 
Avg 

0,95 0,95 0,95 250 

Weight

ed Avg 

0,95 0,95 0,95 250 

       

Neural 

Networ
k 

0 0.78 0.78 0.78 50 0.74 

1 0.81 0.94 0.87 50 
2 0.60 0.66 0.63 50 

3 0.78 0.76 0.77 50 

4 0.76 0.58 0.66 50 

Macro 

Avg 

0.75 0.74 0.74 250 

Weight

ed Avg 

0.75 0.74 0.74 250 

Furthermore, the AUC scores indicate the 

discriminative power of the models, with RF achieving 

0.90, GB reaching 0.88, DT scoring 0.76, and NN 

obtaining 0.83. The following Table 3 and Figure 3 

presents the AUC-ROC values for this study. 

 

 

Table 3. AUC-ROC 

Clas

s 

Random 

Forest AUC 

Gradient 

Boosting AUC 

Decisio

n Tree 

Neural 

Network 

AUC 

0 0.9100 0.8700 0.7600 0.8200 
1 0.9600 0.9400 0.8900 0.9300 

2 0.8700 0.8500 0.6600 0.8300 

3 0.8900 0.8900 0.7400 0.7600 
Aver

age 

0.9075 0.8875 0.7625 0.8350 

 

Figure 3. AUC-ROC Curve 

An interesting finding from this study is the 

performance discrepancy of the Decision Tree (DT) 

model. While DT achieved the highest overall accuracy 

(95%), it also obtained the lowest average AUC score 

(0.76) compared to Random Forest (0.90), Gradient 

Boosting (0.88), and Neural Networks (0.83). This 

indicates that DT classified most samples correctly, but 

its ability to consistently distinguish between all classes 

was weaker than ensemble methods such as RF and 

GB. 

Further analysis of the confusion matrix (Table 2) 

shows that DT reached very high precision and recall 

for certain classes (e.g., 0.98 for Class 1), which 

contributed to its high accuracy, but its performance 

dropped for others (e.g., 0.92 for Class 2). The AUC-

ROC visualization (Figure 3) reinforces this finding by 

showing that DT’s ROC curves are less consistent 

across classes compared to RF and GB, whose curves 
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lie closer to the top-left corner, indicating stronger 

class separability. 

In the context of medical diagnostics, this discrepancy 

highlights the importance of evaluating models not 

only by accuracy but also by AUC. Accuracy reflects 

the overall proportion of correct classifications, while 

AUC provides a more comprehensive measure of a 

model’s discriminative power across all classes, which 

is especially critical when distinguishing between 

normal and abnormal Pap smear samples. Beyond the 

performance of DT, it is also important to examine 

how other models behaved in terms of Accuracy and 

AUC, as these metrics provide a broader perspective on 

model effectiveness. The AUC scores for RF and GB 

were 0.90 and 0.88, respectively, indicating strong 

discriminative power. Conversely, the NN model, with 

an AUC of 0.83, while still reasonably good, highlights 

the challenges faced by deep learning models when 

trained on smaller datasets [33]. These findings align 

with previous research that has reported similar 

performance levels for RF and GB in various 

classification tasks, reinforcing their status as robust 

algorithms for medical image analysis [34], [35]. 

3.2. Decision Tree Performance 

The Decision Tree (DT) algorithm demonstrated the 

highest classification accuracy in this study, achieving 

95% as shown in Table 2. This strong performance can 

be attributed to its straightforward rule-based structure, 

which enables the model to capture clear decision 

boundaries in the dataset. In particular, DT exhibited 

very high precision and recall for certain classes (e.g., 

0.98 for Class 1), contributing significantly to its 

overall accuracy. 

However, despite its high accuracy, DT achieved the 

lowest average AUC score (0.76) compared to other 

algorithms (Table 3 and Figure 3). This discrepancy 

suggests that while DT can correctly classify a large 

proportion of samples, its ability to consistently 

discriminate between all classes is weaker than 

ensemble-based methods such as Random Forest and 

Gradient Boosting. For instance, DT tended to perform 

well on classes with distinct feature patterns but 

showed performance drops in classes with overlapping 

feature distributions (e.g., 0.92 for Class 2). 

This result highlights an important characteristic of DT 

models: they are prone to overfitting when dealing with 

complex datasets, which can lead to high accuracy but 

reduced generalization in terms of discriminative 

ability. Nevertheless, the simplicity and interpretability 

of DT make it attractive for medical diagnostics, as its 

rule-based structure allows clinicians to trace decision 

paths and understand classification outcomes. 

3.2. Random Forest and Gradient Boosting 

Performance 

The superior performance of RF and GB can be 

attributed to their ensemble learning techniques, which 

combine multiple weak predictions to produce a strong 

predictive model. RF builds multiple decision trees and 

aggregates their outputs, effectively reducing 

overfitting and improving generalization [36]. GB, on 

the other hand, builds models sequentially, focusing on 

correcting errors from previous iterations, allowing it 

to adaptively improve performance with each 

additional tree [37]. This adaptability is particularly 

beneficial in medical diagnostics, where the complexity 

and variability of data can significantly impact 

classification accuracy. The results of this study 

support findings from other research that has 

demonstrated the effectiveness of RF and GB in 

medical image classification tasks. For instance, 

studies have shown that RF consistently outperforms 

traditional classification, achieving higher accuracy 

and AUC scores in various applications, including 

medical imaging [38], [39]. Similarly, GB has been 

recognized for its high predictive accuracy in various 

domains, including healthcare, where it has been 

successfully applied to predict patient outcomes and 

disease progression [40]. 

3.3. Neural Network Performance 

The lower accuracy of NN in this study highlights the 

challenges associated with training deep learning 

models on limited datasets. Although NNs have 

demonstrated remarkable success in various image 

classification tasks, especially in scenarios with large 

amounts of labeled data, their performance can be 

hindered when datasets are small or imbalanced [41], 

[42]. This observation is consistent with the existing 

literature, which suggests that deep learning models 

often require extensive training data to achieve optimal 

performance. Despite these limitations, the potential of 

NNs in medical image classification remains 

significant, especially as larger and more diverse 

datasets become available for training. 

3.4. Implications for Medical Diagnostics 

The findings of this study have significant implications 

for the field of medical diagnostics, particularly in the 

context of cervical cancer detection. The high accuracy 

achieved by DT indicates that this algorithm can be 

effectively integrated into clinical decision support 

systems to assist pathologists in analyzing Pap smear 

images. By providing accurate and reliable 

classifications, this model can improve the efficiency 

of cervical cancer screening programs and enhance 

patient outcomes. Moreover, these results highlight the 

importance of selecting the appropriate classification 

algorithm based on the characteristics of the dataset 

and the specific requirements of the classification task. 

As the field of medical image analysis continues to 

evolve, the integration of ensemble methods like DT 

with more recent techniques such as hybrid models 

may further improve accuracy. 
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4.  Conclusion 

This study demonstrates that the Decision Tree (DT) 

algorithm achieved the highest accuracy (95%) in 

classifying Pap smear images, although its 

discriminative ability, reflected by the AUC score, was 

lower than that of ensemble methods such as Random 

Forest and Gradient Boosting. These findings suggest 

that while DT offers simplicity and interpretability, 

ensemble models provide more consistent class 

separability. Neural Networks, in contrast, exhibited 

lower performance due to the limited dataset but 

remain promising for medical image classification 

when larger datasets are available. 

This study has several limitations. The dataset size was 

relatively small (250 images), which may limit 

generalizability. The Neural Network model did not 

perform optimally due to the limited data size, and the 

study only relied on GLCM-based texture features 

without exploring other descriptors such as 

morphological or deep learning-based features. These 

limitations indicate that the reported results should be 

interpreted with caution, particularly for broader 

clinical applications. 

Future research should therefore focus on addressing 

these limitations. Expanding the dataset with larger and 

more diverse Pap smear images, integrating deep 

learning approaches (e.g., CNN and transfer learning) 

with handcrafted features, and developing hybrid or 

ensemble models that combine interpretable algorithms 

(such as Decision Tree) with more powerful learners 

(such as Neural Networks) are promising directions. 

Validating the proposed methods using real-world 

clinical data will also be essential to ensure reliability 

and applicability in practical cervical cancer screening. 
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