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Melanoma skin cancer is one of the most aggressive forms of 

cancer, requiring early detection to improve patient outcomes. 

This study evaluates three image processing methods—

Laplacian, Box Blur, and Edge Detection—used in melanoma 

detection, analyzing their performance using Mean Squared 

Error (MSE) and Structural Similarity Index (SSIM) metrics. 

Among these, Box Blur demonstrated the best overall 

performance with the lowest average MSE (104.16), 

indicating minimal distortion in the processed images. 

Additionally, it achieved the highest SSIM score (0.851), 

suggesting that it best preserved the structural integrity of the 

images, making it the most effective in maintaining both 

quality and important diagnostic details. In contrast, Edge 

Detection produced the highest MSE (108.02) and a negative 

SSIM score (-0.016), significantly distorting image structure 

and making it less suitable for melanoma detection. Laplacian, 

while moderate in performance, did not outperform Box Blur, 

with an MSE of 106.99 and an SSIM of 0.175. These results 

highlight Box Blur as the most reliable technique for 

melanoma image analysis, ensuring both clarity and structural 

preservation. By effectively enhancing diagnostic features and 

reducing errors, Box Blur offers a valuable tool for clinicians 

aiming to improve diagnostic accuracy in melanoma 

detection. 
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1. Introduction 

Skin cancer is one of the most common types of cancer 

this decade. Considering that the skin is the largest organ 

in the human body, it is natural for skin cancer to be the 

most frequent type of cancer among humans [1]. Skin 

cancer is generally classified into two main categories: 

melanoma and nonmelanoma skin cancer [2]. 

Melanoma is a dangerous, rare, and deadly form of skin 

cancer. According to the American Cancer Society, 

melanoma accounts for only 1% of skin cancer cases but 

is responsible for a higher mortality rate. This occurs 

because melanoma develops in melanocytes, where 

genetic mutations or unrepaired DNA damage cause 

these cells to grow uncontrollably [3], [4]. Early 

detection is crucial for effective treatment, given its high 

mortality rate if not identified promptly. Nonmelanoma 

skin cancer (NMSC) is the most common type of cancer 

in the Western world, affecting primarily older adults 

but increasingly younger populations. Basal cell 

carcinoma (BCC) represents the majority of NMSC 

cases, often appearing on the head and neck. To improve 

cosmetic outcomes, noninvasive diagnostic and 

monitoring techniques have been developed, aiming to 

reduce the need for invasive procedures [5], [6]. The 

development of these techniques marks a significant 

improvement in patient care, especially considering the 

rising demand for more effective and less intrusive 

diagnostic tools. 

In comparison, melanoma is the deadliest type of skin 

cancer, responsible for approximately 55,500 deaths 

annually, or 0.7% of all cancer deaths worldwide. The 

incidence and mortality rates of melanoma vary by 

country, with differences attributed to ethnic and racial 

groups [7]. Melanoma cases are associated with a range 

of physical symptoms, such as dark lesions that may 

appear pink, white, or brown in some cases. Moreover, 

the texture and structure of melanoma lesions 

distinguish them from benign ones, highlighting the 

need for early and accurate detection [8]. The increasing 

incidence of melanoma and its potentially fatal 
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outcomes have driven significant advancements in early 

detection methods. Studies have focused on identifying 

melanoma in its earliest stages to improve patient 

survival rates. Recently, researchers have explored 

various techniques, including data augmentation and 

machine learning, to enhance detection accuracy. Esteva 

et al. (2021) demonstrated that data augmentation, such 

as image enlargement, improved the performance of a 

convolutional neural network (CNN) by increasing the 

diversity of the training dataset. This process involved 

rotating, flipping, scaling, and cropping images to 

simulate variations in skin lesion appearance. The 

results revealed that models trained with augmented 

datasets showed higher accuracy and sensitivity 

compared to those trained with original datasets alone, 

underscoring the significance of data augmentation in 

the medical domain. 

Further advancements in preprocessing techniques, such 

as MinMax normalization, have also proven beneficial. 

Han et al. (2021) found that applying MinMax 

normalization before feeding skin lesion data into a 

CNN resulted in improved model convergence and 

classification accuracy. By scaling pixel values to the 

range [0, 1], MinMax normalization aids in stabilizing 

model learning, making it a valuable step in 

preprocessing for skin cancer detection models [9]. 

Despite the effectiveness of data augmentation and 

normalization techniques, more sophisticated tools have 

emerged for detecting skin cancer. One promising 

innovation is millimeter-wave radar, capable of 

distinguishing melanoma from healthy tissue by 

detecting variations in electrical properties. Homa Arab 

et al. developed a radar system operating at 77 GHz for 

biomedical imaging and skin cancer detection. This 

system is designed for high accuracy and cost efficiency, 

providing a less invasive method to detect melanoma in 

early stages, further emphasizing the need for diverse 

diagnostic tools [10]. 

In terms of computational approaches, both machine 

learning (ML) and deep learning (DL) have been 

employed to improve skin lesion classification accuracy. 

Youssef Filali et al. proposed a hybrid approach 

combining handcrafted features such as shape, color, 

and texture with deep learning features from CNNs. This 

combination addressed the limitations of each method, 

demonstrating promising results on both large and small 

datasets [11]. Similarly, research by Chandran Kaushik 

Viknesh et al. explored CNNs and support vector 

machines (SVMs) for melanoma classification. Their 

CNN-based method achieved higher accuracy, and the 

system was integrated into web and mobile applications 

for real-time melanoma detection [12]. 

The primary aim of this study is to develop an improved 

melanoma detection method by integrating techniques 

such as data augmentation, preprocessing 

enhancements, and convolutional neural networks. By 

building on the successes and addressing the limitations 

of previous methods, this research seeks to provide a 

more accurate and efficient detection system for 

melanoma skin cancer. The study aims to compare the 

performance of the proposed techniques against existing 

approaches, focusing on their ability to handle diverse 

and complex datasets while maintaining high detection 

accuracy. Ultimately, by combining multiple techniques 

such as data augmentation, advanced preprocessing 

(e.g., MinMax normalization), and sophisticated 

detection tools like millimeter-wave radar this study 

intends to overcome the challenges of existing methods. 

It aims to create a more robust system that not only 

improves melanoma detection accuracy but also 

addresses issues related to dataset diversity, processing 

time, and real-time applications. This research seeks to 

contribute valuable insights into the future of computer-

aided melanoma detection. 

2. Research Method 

The presented approach consists of four stages, namely: 

Starting with image enlargement using the LANCZOS 

resampling method which gives smooth results, the 

image is then subjected to processing with a MIN-MAX 

filter to reduce noise without losing the main structure 

of the image. The next step is contrasting enhancement 

using ImageEnhance, which clarifies the difference 

between light and dark areas to bring out important 

details. Then, various convolution filters are applied: 

Laplacian for fine edge detection, Box Blur for uniform 

smoothing, and Edge Detection to emphasize the 

boundaries of objects with high intensity. Figure 1 

explains the proposed approach.  

 

Figure 1. Process of The Proposed Method 
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2.1. Dataset 

The melanoma dataset used in this study consists of 

images of skin lesions, specifically curated for research 

and development of skin cancer detection models, with 

a focus on melanoma. The dataset includes various types 

of lesions categorized as benign, malignant, or normal, 

and is accompanied by detailed annotations describing 

the characteristics of each image, such as texture, color, 

and lesion boundaries [13]. 

The dataset was obtained from publicly available 

sources, with a particular focus on datasets that have 

been widely used in skin cancer research. Prior to 

analysis, initial preprocessing steps were conducted to 

ensure data quality. These preprocessing steps included 

resizing the images for uniformity, applying contrast 

enhancement techniques to improve visibility of 

important features, and removing any duplicate or low-

quality images to maintain consistency. Additionally, 

data augmentation methods, such as rotation and 

flipping, were used to increase the variability in the 

dataset and prevent overfitting during model training. 

To ensure high data quality, the images were carefully 

inspected to verify that the annotations were accurate 

and consistent with clinical standards. This meticulous 

curation process helps ensure the reliability of the 

dataset, directly influencing the accuracy and 

performance of the machine learning and deep learning 

models developed. For this study, 40 melanoma skin 

cancer datasets were selected. Figure 2 shows an image 

of a benign melanoma, and Figure 3 illustrates a 

malignant melanoma. 

 

Figure 2. Benign Cancer 

 

Figure 3. Malignant Cancer 

2.2. Enlarge  

The Lanczos method is an image enhancement 

technique used to enlarge images while maintaining 

high visual quality. This technique uses a Lanczos 

kernel, which is a truncated sinc function, to calculate 

new pixel values in the enlarged image. The Lanczos 

process involves using the coefficients of this kernel to 

weight the contributions of several pixels around each 

enlarged pixel, thus producing a smoother and more 

detailed image by reducing artifacts such as aliasing. 

The value of each new pixel is calculated as a weighted 

sum of the surrounding pixels, with the weights 

determined by the Lanczos kernel, which ensures that 

the contribution from more distant pixels is reduced. 

This method is more complex and requires more 

calculations than simple interpolation methods such as 

bilinear or bicubic, but is capable of producing smoother 

images and retaining more visual detail [14]. 

Below is the formula (1) for the lanczos method: 

𝐴𝑦 = 𝐴𝑉𝑥 =  𝑉𝑇𝑉 ∗ 𝑉𝑥 =  𝑉𝑇𝐼𝑥 =  𝑉𝑇𝑥 = 𝑉(𝜆𝑥) =

 𝜆𝑉𝑥 =  𝜆𝑦                (1) 

Where, A is the matrix being approximated, and 𝑉𝑥  

represents a vector from the orthogonal basis V 

generated during the Lanczos iterations. The product 

𝐴𝑉𝑥 results in a new vector 𝐴𝑦, which represents the 

transformation of the original matrix A by the vector 𝑉𝑥. 

The term VTV represents the matrix A being 

decomposed into a tridiagonal matrix T using the 

orthogonal basis vectors in V, allowing for efficient 

computations. 

The variable λ is an eigenvalue of the matrix T, and it 

scales the vector 𝑉𝑥, yielding λ𝑉𝑥. This step 

approximates how the matrix A acts on its eigenvectors, 

enabling the identification of the eigenvalues of A 

through the smaller matrix T. By following this process, 

the Lanczos method reduces the computational 

complexity associated with large matrices while 

preserving the key characteristics necessary for 

eigenvalue calculations or solving linear systems. 

2.3. Filter MIN-MAX  

The MIN-MAX filter in image processing is a non-

linear technique used to smooth images and reduce noise 

by replacing the pixel value at the center of the filter 

window with the minimum or maximum value of the 

surrounding pixels in the window. The Minimum Filter 

(Min Filter) replaces the center pixel value with the 

minimum pixel value within the window, which is 

effective for removing impulse noise or "salt noise". 

Conversely, the Maximum Filter (Max Filter) replaces 

the center pixel value with the maximum pixel value 

within the window, which is effective for removing 

impulse noise or "pepper noise" [15]. This technique is 

simple and easy to implement, and is effective in 

reducing impulse noise, but can cause loss of image 

detail, especially on edges and fine lines. The use of 

MIN-MAX filters is essential in image processing to 

remove certain types of noise in an efficient manner 

[16]. 

Below is the formula of the MIN-MAX filter [17]. 

𝑥𝑡 =  
min(𝑥𝑖+𝑑𝑖)+max(𝑥𝑖−𝑑𝑖)

2
               (2) 
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𝑦𝑡 =  
min(𝑦𝑖+𝑑𝑖)+max(𝑦𝑖−𝑑𝑖)

2
               (2) 

Where, 𝑥𝑖 and 𝑦𝑖  represent the pixel intensities in the x- 

and y- coordinates at position i. 𝑑𝑖 is a small adjustment 

value or neighborhood size that determines how far to 

look for the minimum and maximum values in the 

surrounding pixels. min(𝑥𝑖 + 𝑑𝑖) and max(𝑥𝑖 − 𝑑𝑖) are 

the minimum and maximum values computed within a 

local neighborhood around the pixel. 

The goal of this filter is to calculate the average of the 

local minimum and maximum pixel values within a 

defined neighborhood. This averaging helps to smooth 

out noise by reducing the impact of extreme values (such 

as noise spikes) while maintaining the overall structure 

of the image. By applying the MIN-MAX filter in both 

x- and y-directions, the image becomes cleaner, with less 

noise and fewer artifacts, but still retains important 

edges and details. 

This filter is particularly useful where noise needs to be 

reduced without significant blurring, which is essential 

for preserving edges and fine details in the image. 

2.4. Enhancement  

Contrast enhancement in image processing is a 

technique used to increase the difference between the 

intensities of adjacent pixels in an image. One 

commonly used method is Histogram Equalization, 

where the intensity distribution of pixels across a range 

of intensity values is altered to flatten the image 

histogram. This technique is effective in enhancing 

details hidden in shadows or highlights, resulting in a 

sharper and more visually dynamic image [18], [19]. In 

addition, Contrast Stretching is also often used, where 

the range of pixel intensities is extended from the 

minimum to the maximum value present in the image, 

increasing the overall contrast. These two methods can 

be applied in various ways to improve image quality in 

a wide range of applications, from medical analysis to 

object recognition in computer vision [20]. 

Here is the formula (3) for histogram equalization [21]. 

𝐼𝑒𝑞𝑢𝑎𝑙𝑖𝑧𝑒𝑑(𝑥, 𝑦) =  ⌊
(𝐿−1)

(𝑀×𝑁)
∑ 𝐻(𝑖)

𝐼(𝑥,𝑦)
𝑖=0 ⌋             (3) 

Where, 𝐼𝑒𝑞𝑢𝑎𝑙𝑖𝑧𝑒𝑑(𝑥, 𝑦) is the new pixel intensity, I(x,y) 

the original intensity at coordinates H(i) a histogram that 

stores the number of pixels, L the number of intensity 

levels, and M,N the image dimensions [21]. 

2.5. Convolution 

In image processing, Laplacian convolution filters are 

often used to detect smooth edges [22]. This filter works 

by identifying sharp changes in pixel intensity around a 

particular point in the image. This makes it possible to 

find edges that are not too rough or sharp, helping in 

analyses that require finer and more detailed edge 

detection [23]. 

Meanwhile, the Box Blur filter is one of the techniques 

for uniform smoothing or reducing noise in an image 

[24]. This filter works by flattening the pixel values 

around each point in the image, producing a smoothing 

effect and reducing sharp variations between 

neighboring pixels. This is useful for removing small 

details or unwanted noise from the image, improving 

overall visual clarity. 

In addition, edge detection techniques in image 

processing, such as using Sobel or Canny filters, focus 

on identifying drastic changes in pixel intensity, which 

signify boundaries between objects or features in the 

image [25]. These techniques are used for object 

segmentation, pattern recognition, and many other 

applications that require a detailed understanding of the 

image structure. 

The application of such convolutional filter 

combinations can improve image processing by 

optimizing edge detection, reducing noise, and 

sharpening relevant details according to specific 

application needs. 

In general, the image convolution formula is as follows: 

𝐼(𝑥, 𝑦) =  ∑ ∑ 𝐼(𝑥 − 𝑖, 𝑦 − 𝑗). 𝐾(𝑖, 𝑗)𝑗𝑖               (4) 

Where I is the original image, K is the kernel, (i,j) is the 

index of the kernel and (x,y) is the pixel coordinate in 

the image. 

2.6. Mean Squared Error (MSE) 

Mean Squared Error (MSE) is a widely used metric for 

evaluating the performance of regression models [26]. It 

is calculated by taking the average of the squared 

differences between the predicted values and the actual 

values, as shown by the formula: 

𝑀𝑆𝐸 =  
1

𝑚
∑ (𝑋𝑖 −  𝑌𝑖)

2𝑀
𝑖=1                (5) 

Where 𝑚 is the number of data points, 𝑋𝑖 represents the 

predicted value, and 𝑌𝑖 represents the true value. The 

best possible MSE is 0, indicating perfect predictions, 

while the worst value can theoretically be infinite [26]. 

One key feature of MSE is its sensitivity to outliers, due 

to the squaring of errors. When there is a large deviation 

between a prediction and the true value, the squared 

error is magnified, making MSE particularly useful for 

detecting outliers. This property stems from the L2 

norm, which amplifies larger errors more than smaller 

ones. Therefore, a single poor prediction can 

significantly impact the overall MSE score, which is 

beneficial when identifying problematic data points but 

can also make MSE prone to being skewed by outliers. 

In terms of methodology, MSE is advantageous when it 

is important to give more weight to large errors, 

especially in cases where the model's performance on 

extreme values is critical. However, this sensitivity can 

also be a limitation if the model is overly penalized for 
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outliers, making MSE less ideal when outliers are not a 

concern. Therefore, while MSE is useful for identifying 

large errors, it may be complemented by other metrics, 

such as Mean Absolute Error (MAE), to provide a more 

balanced evaluation of model performance. 

2.7. Structural Similarity Index (SSIM) 

The Structural Similarity Index (SSIM) is a widely used 

metric for measuring the similarity between two images, 

focusing on perceived changes in structural information. 

The methodology for calculating SSIM involves several 

key steps [27], [28]. 

First, the two images to be compared, typically the 

original image 𝐼 and the processed image 𝑃, are 

converted to grayscale if they are in color, as SSIM 

primarily assesses luminance [28]. Next, the images are 

divided into small overlapping windows (or patches) of 

size 𝑁 × 𝑁. For each window, the SSIM index is 

computed based on three components: luminance, 

contrast, and structure. 

The luminance component quantifies the brightness 

similarity between the two images, calculated as: 

𝐿(𝑥, 𝑦) =  
2𝜇𝐼𝜇𝑃+𝐶1

𝜇𝐼
2+𝜇𝑃

2 +𝐶1
                (6) 

Where 𝜇𝐼 and 𝜇𝑃 are the mean pixel values of the 

windows in the original and processed images, 

respectively, and 𝐶1 is a small constant to prevent 

division by zero [27], [28]. 

The contrast component assesses the variability (or 

contrast) of the images, calculated as: 

𝐶(𝑥, 𝑦) =  
2𝜎𝐼𝜎𝑃+𝐶2

𝜎𝐼
2+𝜎𝑃

2+𝐶2
                (7) 

Where 𝜎𝐼 and 𝜎𝑃 are the standard deviations of the pixel 

values in the respective windows, and 𝐶2 is another 

small constant [27], [28]. 

The structure component measures the correlation 

between the two images, defined as: 

𝑆(𝑥, 𝑦) =  
𝜎𝐼𝑃+𝐶3

𝜎𝐼𝜎𝑃+𝐶3
                (8) 

Where 𝜎𝐼𝑃 is the covariance of the pixel values between 

the two windows, and 𝐶3 is a small constant. 

Finally, the overall SSIM index for the two images is 

calculated by combining these three components: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 𝐿(𝑥, 𝑦). 𝐶(𝑥, 𝑦). 𝑆(𝑥, 𝑦)              (9) 

Where, the SSIM value ranges from -1 to 1, with 1 

indicating perfect structural similarity, 0 representing no 

similarity, and negative values indicating significant 

distortion or differences [27], [28].  

By averaging the SSIM values of all windows, a single 

SSIM score for the entire image pair is obtained, 

providing a comprehensive assessment of the perceived 

quality and structural integrity of the processed image 

compared to the original. This method is particularly 

valuable in applications such as medical imaging, where 

maintaining structural fidelity is crucial for accurate 

diagnosis and analysis. 

3.  Result and Discussion 

The results of applying the enlarge method, MIN-MAX 

filter pre-processing, enhancement and convolution 

using a dataset of 40 melanoma skin cancer image data. 

The process begins with image enlargement using the 

LANCZOS resampling method, then the image 

undergoes processing with the MIN-MAX filter. The 

next step is contrasting enhancement using 

ImageEnhance, and applying Laplacian convolution 

filter, Box Blur for uniform smoothing, and Edge 

Detection. The outcomes of these stages are summarised 

in Table 1. 

Table 1. Result the Image 

Figure Result 
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Table 2. Result the Image (Continue) 

6 

 
7 

 
8 

 
9 

 
10 

 

Below is the table showing the accuracy results for 40 

images using Mean Squared Error (MSE) and Structural 

Similarity Index (SSIM), as summarized in Table 2. 

Table 2. Result of Accuracy from MSE and SSIM 

 MSE SSIM 

Laplacian 106.990 0.175 

Box Blur 104.160 0.851 

Edge Detection 108.020 -0.016 

Based on the evaluation results from processing 40 

melanoma images, clear differences emerge between the 

performance of the Laplacian, Box Blur, and Edge 

Detection methods. The assessment was conducted 

using two key metrics: Mean Squared Error (MSE) and 

the Structural Similarity Index (SSIM).  

MSE measures the average squared error between the 

original and processed images, where a lower MSE 

indicates better performance. From the average results, 

Box Blur demonstrated the lowest MSE, with a value of 

104.16, indicating that this method introduced the least 

distortion to the images compared to the others. On the 

other hand, Edge Detection had the highest MSE, at 

108.02, suggesting that this method resulted in greater 

errors when detecting edges in the images. 

In terms of SSIM, which evaluates the structural 

similarity between the original and processed images, 

Box Blur again proved to be the most effective, with the 

highest SSIM value of 0.851, indicating that it was the 

best at preserving the structural integrity of the images. 

Edge Detection, however, showed a negative SSIM 

score of -0.016, meaning it significantly distorted the 

structure of the images. Laplacian performed 

moderately well, with an SSIM score of 0.175, though 

still far below the performance of Box Blur. 

Overall, these results indicate that Box Blur is the most 

effective method for preserving image quality and 

structural integrity, making it the optimal choice for 

image processing, especially in the analysis of 

melanoma images where precision is crucial. Laplacian 

performed moderately, while Edge Detection proved to 

be less effective in preserving both quality and structure, 

making it unsuitable for applications that require high 

accuracy. If the main goal is to maintain image quality 

and reduce noise without losing important details, Box 

Blur stands out as the best option.  

4.  Conclusion 

In conclusion, the evaluation of various image 

processing techniques on a dataset of 40 melanoma skin 

cancer images highlights the effectiveness of the Box 

Blur method in preserving image quality. The results, 

demonstrated through both Mean Squared Error (MSE) 

and Structural Similarity Index (SSIM) analyses, reveal 

that Box Blur consistently achieved the lowest MSE 

values, indicating minimal loss of original image 

quality, along with the highest SSIM scores that reflect 

its superior perceptual similarity to the original images. 

Conversely, the Laplacian and Edge Detection methods 

exhibited higher MSE and lower SSIM values, 

suggesting a tendency to distort the images and 

compromise structural integrity. 

These findings have significant implications for real 

medical practice, particularly in the diagnosis and 

treatment of skin cancer. By utilizing the Box Blur 

technique, dermatologists and medical professionals can 

enhance the clarity and detail of melanoma images, 

leading to more accurate assessments and improved 

visualization of critical features that inform treatment 

decisions. Enhanced image quality may facilitate better 

pattern recognition and identification of malignant 

lesions, ultimately aiding in early detection and timely 

intervention. 

For further research, it would be valuable to explore the 

integration of advanced techniques such as deep 

learning-based image processing, which have shown 

promise in medical imaging. Additionally, investigating 
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hybrid methods that combine the strengths of Box Blur 

with other techniques, such as adaptive filtering or 

machine learning algorithms, could further improve the 

robustness and accuracy of melanoma image 

enhancement. Exploring real-time processing 

capabilities would also enhance clinical workflows, 

enabling immediate analysis during patient 

examinations. These avenues for future research could 

lead to significant advancements in medical image 

processing and improve outcomes in skin cancer 

diagnosis and treatment. 
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