
  

39 

 

 

 

Identification of Potato Plant Pests Using the Convolutional Neural 

Network VGG16 Method 

Sri Hadianti1*, Faruq Aziz2, Daning Nur Sulistyowati3, Dwiza Riana4, Ridwan Saputra5, and 

Kurniawantoro6 
1,2,3,4,5,6Universitas Nusa Mandiri, Indonesia 

MEDINFTech is licensed under a Creative Commons 4.0 International License. 

 

ARTICLE HISTORY  A B S T R A C T  

Received: 20 June 24 

Final Revision: 28 June 24 

Accepted: 29 June 24 

Online Publication:  30 June 24 

Pests are one of the main challenges in potato cultivation that 

can significantly reduce crop yields. Therefore, quick and 

accurate pest identification is crucial for effective pest 

control. This research aims to develop a pest identification 

system for potato plants using the Convolutional Neural 

Network (CNN) method with the VGG16 architecture. The 

dataset used consists of images of pests commonly found on 

potato plants. After the labeling process, these images were 

used to train the CNN VGG16 model. The research results 

show that the CNN VGG16 method can identify types of 

pests with an accuracy rate of 73%. The results serve as a 

reference to help farmers and agricultural practitioners detect 

the presence of pests earlier and take the necessary actions to 

reduce crop losses. 
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1. Introduction 

Potato (Solanum tuberosum) is one of the major 

agricultural commodities worldwide that significantly 

contributes to global food security [1]. The consistent 

production of potatoes faces serious challenges due to 

pest attacks and diseases, which can cause significant 

losses in yields if not effectively managed [2]. Pest 

attacks such as flea beetles (Phyllotreta), cutworms 

(Agrotis), and diseases like root rot (Rhizoctonia 

solani) and bacterial wilt (Ralstonia solanacearum) are 

some of the main threats that commonly affect potato 

crops across various regions of the world [3]. 

Traditional approaches to identify pests and diseases in 

potato plants often rely on visual inspection by farmers 

or agricultural experts. While these methods can 

provide valuable initial information, they often have 

limitations in detecting pest attacks promptly, 

especially in large agricultural areas or when symptoms 

of pest infestation are difficult to recognize visually 

[4]. This can lead to delays in implementing effective 

preventive or curative actions, which in turn can reduce 

productivity and the quality of the harvest. 

In the current digital era, advancements in digital 

image processing and artificial intelligence have 

opened new opportunities to enhance early detection 

and management of pest and disease attacks in plants. 

One prominent technique is Convolutional Neural 

Networks (CNN), an approach in deep learning that has 

proven effective in pattern recognition in image [5]. 

CNN allows systems to automatically learn important 

features from plant images, including symptoms of pest 

attacks that may be difficult for the human eye to 

recognize. 

One popular variant of CNN is VGG16, renowned for 

its capability to classify images with high accuracy [6]. 

VGG16 has a deep architecture consisting of 16 

convolutional layers and associated layers, enabling it 

to recognize complex visual patterns in images. This 

capability makes VGG16 an attractive choice for 

implementing systems to identify pests and diseases in 

potato plants. 

The application of CNN VGG16 in agricultural 

contexts, particularly in identifying pests in potato 

plants, promises to provide more accurate and efficient 

solutions compared to conventional methods. This 

technology allows for in-depth analysis of potato plant 

images from various perspectives, detecting subtle 

symptoms that may be difficult to recognize manually 

[7]. Therefore, systems utilizing CNN VGG16 have the 

potential to become valuable tools for farmers and 

researchers in monitoring and managing pest attacks 

more effectively. They enable faster and more accurate 

decision-making processes, enhancing the ability to 

respond promptly to pest outbreaks. 

Previous research has demonstrated the success of 

CNN VGG16 in various object recognition 

applications, including the detection and classification 
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of pests and diseases in plants [8], [9], [10]. However 

to implement this technology widely in field practice, 

further validation is needed across various agricultural 

conditions, as well as integration with existing 

agricultural management systems [11]. 

This research aims to explore the full potential of CNN 

VGG16 in supporting comprehensive and practical 

management of pests and diseases in potato plants. By 

integrating artificial intelligence and advanced image 

processing technology, the goal is to develop systems 

that enhance agricultural production efficiency, 

strengthen global food security, and support sustainable 

and environmentally friendly farming practices. 

2. Research Method 

This research aims to identify pests in potato plants. 

The research methodology involves several main 

stages: data collection, data preprocessing, CNN model 

development, model training and evaluation, and result 

analysis. Figure 1 provides detailed information about 

each stage. 

 

Figure 1. Research Method 

2.1. Dataset  

The dataset obtained from Kaggle regarding potato 

crop pests consists of 459 images categorized into 8 

main pest classes. Each class represents a different type 

of pest such as Amrasca devastans, Aphis gossypii, 

Brachytrypes portentosus, Bemisia tabaci, Epilachna 

vigintioctopunctata, Agrotis ipsilon, Myzus persicae, 

and Phthorimaea operculella. The purpose of collecting 

this data is to support the development of an automated 

recognition and classification system that can assist 

farmers in early detection and management of pests in 

potato crops [12]. The available data may also include 

additional information such as image capture locations 

and plant conditions, which can provide further value 

for effective pest control analysis. By utilizing this 

dataset, researchers can train models to accurately 

identify various types of potato crop pests based on the 

available visual images. Figure 3 is an example of an 

image used in the dataset. 

 

 

Figure 3. Potato Pets 

2.2. Preprocessing Data 

The preprocessing of the dataset involves several 

critical steps to ensure the images are ready for training 

a machine learning model, with a significant focus on 

image augmentation. Initially, each image is resized to 

a consistent dimension, typically 224x224 pixels, to 

standardize the input size. Normalization follows, 

scaling pixel values to a range of 0 to 1 to facilitate 

faster convergence during training. Various image 

augmentation techniques are then applied to increase 

the diversity of the dataset. These techniques include 

random rotations between -30 to 30 degrees, horizontal 

and vertical flipping, zooming in and out, horizontal 

and vertical shifting, shearing to introduce skewness, 

and adjustments to brightness and contrast to simulate 

different lighting conditions. The augmented dataset is 

subsequently split into training, validation, and test 

sets, typically allocating 70-80% for training, 10-15% 

for validation, and the remaining 10-15% for testing 

[13]. By implementing these preprocessing and 

augmentation strategies, the dataset becomes more 

robust, enhancing the performance and generalization 

capabilities of the trained model. 

2.3. Identification Image 

Image identification is performed using the VGG16 

model. VGG16 is a well-known deep learning model, 
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consisting of 16 layers, including convolutional and 

fully connected layers, designed to identify and classify 

images with high precision [14]. In the context of this 

research, the VGG16 model will be applied through 

several crucial stages. Initially, the pre-trained VGG16 

model, trained using the ImageNet dataset, will be 

initialized. ImageNet is a large dataset containing 

millions of images classified into thousands of 

categories, providing the VGG16 model with a strong 

foundation for recognizing various visual features. The 

architecture of the VGG16 model can be seen in Figure 

3. 

 

 

Figure 3. Architecture of  VGG16 

The next stage is fine-tuning, where the final layers of 

the VGG16 model will be modified and adjusted to 

identify specific classes of potato crop pests [15]. This 

involves replacing the last fully connected layer with a 

new layer that corresponds to the desired number of 

pest classes. After modification, several of the final 

layers of the model will be retrained using the pre-

prepared potato crop pest image dataset. This process 

allows the model to adapt its knowledge from 

ImageNet to the specific task of identifying potato crop 

pests, thereby improving the accuracy and relevance of 

its identification results. 

2.4. Validation 

The model validation process is a crucial stage to 

ensure the model's capability in identifying and 

classifying potato plant pest images with high accuracy. 

This involves using a separate validation dataset from 

the training dataset to objectively measure the model's 

performance. Evaluation metrics such as accuracy, 

precision, recall, and F1-score play a role in assessing 

how well the CNN model can recognize various types 

of pests on potato plants [16]. These metrics help 

evaluate the reliability and accuracy of the model in 

specific classification tasks. 

Additionally cross-validation is performed if possible 

to test the model's stability and consistency across 

different data variations. This step supports model 

generalization its ability to recognize pest images not 

seen during training, and ensures that evaluation results 

are trustworthy and reproducible in different scenarios. 

The primary goal of validation is to ensure that the 

developed CNN model can be relied upon for accurate 

pest identification on potato plants. This evaluation 

aims to assess the model's generalization ability in a 

broader context and to ensure that all training and 

evaluation procedures are conducted with valid 

methodologies that can be replicated to validate the 

findings of this research. 

3.  Result and Discussion 

In this study we tested 459 images of potato plant pests 

using the CNN VGG16 model, with the following 

results: 

3.1. Preprocessing Data 

The data which originally amounted to 459 images had 

a different number for each class, as seen in Figure 4. 

To avoid class imbalance, an augmentation technique 

was used. 

 
Figure 4. Samples Class Before Augmentation and Oversampling 

 

 
Figure 5. Samples Class After Augmentation and Oversampling 
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Figure 4 and Figure 5 can be seen that this indicates 

that the dataset initially had 459 samples before 

applying data augmentation and oversampling 

techniques. The classes in the dataset were not 

balanced, meaning they had different numbers of 

samples. After applying these techniques, the dataset 

now contains 896 samples. Furthermore, each class in 

the dataset now has 112 samples, which suggests that 

the oversampling technique was used to balance the 

classes. This increased size and balanced distribution of 

the data can potentially improve the performance of 

machine learning models by reducing the impact of 

class imbalance and increasing the robustness of the 

models to overfitting. 

The augmented dataset is subsequently split into 

training, validation, and test sets typically allocating 

80% for training, 10% for validation, and the remaining 

10% for testing. The distribution of the dataset can be 

seen in Table 1. 
Table 1. Distribution Dataset 

Class Training Validation Testing 

Amrasca devastans 89 11 11 

Aphis gossypii 89 11 11 

Brachytrypes portentosus 89 11 11 
Bemisia tabaci 89 11 11 

Epilachna vigintioctopunctata 89 11 11 

Agrotis ipsilon,  89 11 11 
Myzus persicae 89 11 11 

Phthorimaea operculella 89 11 11 

The table provides the distribution of samples across 

different classes in the training, validation, and testing 

sets. Each class represents a specific insect species. The 

numbers indicate the number of samples for each class 

in each set. This suggests that the dataset is split into 

three parts: training, validation, and testing. Each class 

has the same number of samples in the training set (89), 

and the same number of samples in the validation and 

testing sets (11). This balanced distribution can be 

beneficial for training machine learning models, as it 

helps to reduce the impact of class imbalance and 

ensures that each class is adequately represented in 

each set. 

3.1. Model Summary 

Table 1 provides information from the VGG16 model 

summary model used in this research.  

Referring to Table 2, it is evident that the VGG16 

architecture begins with an input layer that accepts 

images sized 224x224 with three color channels 

(RGB). The first convolutional layer generates 64 

feature maps with 1,792 parameters. Subsequently, the 

second convolutional layer also produces 64 feature 

maps, but with an increased parameter count of 36,928. 

Table 2. Model Summary 

Layer (type) Pixel Parameter 

InputLayer 224, 224, 3 0 
Conv2D 224, 224, 64 1792 

Conv2D 224, 224, 64 36928 

MaxPooling2D 112, 112, 64 0 
Conv2D 112, 112, 128 73856 

Conv2D 112, 112, 128 147584 

MaxPooling2D 56, 56, 128 0 

Conv2D 56, 56, 256 295168 

Conv2D 56, 56, 256 590080 
Conv2D 56, 56, 256 590080 

MaxPooling2D 28, 28, 256 0 

Conv2D 28, 28, 512 1180160 
Conv2D 28, 28, 512 2359808 

Conv2D 28, 28, 512 2359808 

MaxPooling2D 14,14,512 0 
Conv2D 14,14,512 2359808 

Conv2D 14,14,512 2359808 

Conv2D 14,14,512 2359808 
MaxPooling2D 7, 7, 512 0 

Flatten 25088 0 

Dense 4096 102764544 
Dense 4096 16781312 

Dense 1000 4097000 

The first pooling layer then reduces the resolution of 

the feature maps to 112x112x64 without adding any 

parameters. This process repeats with convolutional 

layers generating 128, 256, and 512 feature maps at 

progressively lower resolutions, interspersed with 

pooling layers that further reduce the resolution. These 

convolutional layers are followed by a flatten layer that 

converts the 3D tensor into a 1D vector of size 25,088. 

The model concludes with three fully connected layers: 

the first two layers each have 4,096 units with 

parameters totaling 102,764,544 and 16,781,312 

respectively, while the final layer has 1,000 units for 

classification with parameters totaling 4,097,000. 

3.3. Evaluation Model 

Below are visual representations depicting the accuracy 

and loss values obtained from experiments conducted 

using the optimal epoch, which is epoch 10. 

Figures 6 and 7 display the progress of accuracy and 

loss values for each epoch during training and 

validation. The yellow line represents the changes in 

accuracy and loss values for the validation data, while 

the blue line indicates these changes for the training 

data. The graphs illustrate a gradual decrease in loss 

values up to epoch 10, alongside a continuous increase 

in accuracy values until epoch 10. By the end of the 

epochs, the training data achieved an accuracy of 0.73, 

and the validation data reached an accuracy of 0.68. 

 

Figure 6. Accuracy of VGG16 
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Figure 7. Loss of VGG16 

 

Table 3. Evaluation Result 

 Precision Recall F1 – Score Support 

0 0.96 0.81 0.88 27 

1 0.42 0.92 0.58 12 

2 1.00 0.29 0.44 7 
3 1.00 0.29 0.44 7 

4 0.75 0.86 0.80 7 

5 0.88 1.00 0.93 14 
6 0.62 0.53 0.57 15 

7 0.86 0.75 0.80 8 

     
Accuracy   0.73 97 

Macro Avg 0.81 0.68 0.68 97 

Weighted Avg 0.81 0.73 0.73 97 

The evaluation results of the CNN model using the 

VGG16 architecture for potato pest identification 

demonstrate promising performance can be seen in 

Table 3. The model achieved an overall accuracy of 

73% across all classes, as indicated in the precision, 

recall, and F1-score metrics for each pest class. 

Precision values ranged from 0.42 to 1.00, with class 0 

showing the highest precision at 0.96. Recall values 

varied from 0.29 to 1.00, with class 1 exhibiting the 

highest recall at 0.92. The F1-scores also varied, with 

class 5 achieving the highest F1-score of 0.93, 

indicating a balanced performance between precision 

and recall. The macro average scores for precision, 

recall, and F1-score were 0.81, 0.68, and 0.68 

respectively, while the weighted averages were 0.81, 

0.73, and 0.73. These results suggest that while the 

model performs well in general, there is room for 

improvement, particularly in enhancing the recall for 

classes with fewer samples. Overall, this study provides 

a solid foundation for developing more efficient and 

accurate pest detection systems, which can aid farmers 

in better managing their crops and reducing losses due 

to pest infestations. 

4.  Conclusion 

The results of the conducted research show promising 

outcomes in the application of Convolutional Neural 

Network (CNN) technology for potato pest 

identification. The use of the VGG16 architecture in 

this model achieved an accuracy of 73% after 10 

epochs of training. This indicates that the VGG16 

model has good capabilities in recognizing visual 

patterns associated with potato pests. However, there is 

still room for improvement in terms of both accuracy 

and model efficiency. This research provides a strong 

foundation for the development of more efficient and 

accurate pest detection systems in the future, which in 

turn can help farmers manage their crops better and 

reduce losses due to pest infestations. Further 

implementation with larger datasets, greater data 

variety, and model parameter optimization can enhance 

the performance of this model. Thus, this technology 

has the potential to be widely applied in modern 

agriculture to increase productivity and sustainability. 
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