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Turbidity of the lens of the eyeball that causes blindness or 

loss of vision is known as a cataract. By diagnosing the causes 

and symptoms of cataracts, early detection helps patients in 

prevention and treatment. The purpose of the research was to 

classify the image of the fundus into two classes: normal and 

cataract. The study also looked at how the optimizers for 

stochastic gradient descent, adaptive moment estimation, root 

mean square propagation, adaptive gradient algorithm, 

adaptive delta, and Nesterov-accelerated adaptive moment 

estimation stacked up against each other. We used the 

EfficientNet architecture in CNN and preprocessed the normal 

fundus and cataract fundus images by dividing each into 

training data (N = 80) and validation data (N = 20) from the 

Kaggle repository. We added test data from the normal fondus 

image (N =20) to see the accuracy of the results. We get 100% 

accuracy of training data, 87% and 77% validation data, and 

100% and 95% test data. 
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1. Introduction 

A cataract is a medical disorder characterized by the 

opacification of the lens in the eye, resulting in a gradual 

deterioration in visual acuity. Aging commonly causes 

cataracts as oxidative stress can make the eye's lens 

opaque, resulting in blurred vision [1]. For millennia, A 

group of well-known illnesses that are characterized by 

lens opacities has been recognized [2]. Cataract is the 

most prevalent cause of blindness on a global scale, 

affecting 94 million individuals who are blind or 

visually compromised. According to data from 2020, 

cataracts caused around 15.2 million instances of 

blindness in those aged 50 and above, in addition to 78.8 

million instances of mild to severe vision impairment 

[3]. Approximately 1.6 million individuals in Indonesia 

are blind, while 8 million have moderate to severe visual 

impairment [4]. 

Over the past few years, deep learning (DL) has become 

a powerful tool across many imaging domains, 

including classification, prediction, detection, 

segmentation, diagnosis, interpretation, and 

reconstruction, among others. Physicians will be 

empowered, and clinical decision-making will be 

accelerated by the diminishing capacity of DL to 

diagnose diseases [5]. Convolutional neural network 

(CNN) are algorithms for deep learning that are widely 

implemented [6]. Cetiner [7] suggested that the 

MobileNet V3 model attains the best level of accuracy 

in accuracy for both validation and training. At the 20th 

epoch, the training accuracy rate achieved a level of 

98.31%, but the validation accuracy rate stood at 

96.62%. Simanjuntak et al. [8] proposed CNN model 

achieves the highest level of accuracy (0.93) when the 

Adam optimizer is applied to a learning rate of 0.001. 

The model achieves an accuracy of 0.92 for test data and 

0.93 for validation data. Firdaus et al. [9] reported The 

CNN approach with the RMSprop optimizer gave 

excellent results in the cataract test. The training 

accuracy was 99.74%, the validation accuracy was 

91.18%, and the testing accuracy was 93.33%. Junayed 

et al. [10] suggested using a breakthrough deep neural 

network, CataractNet, to automatically identify cataracts 

in fundus images. Adjustments are made to the 

activation and loss functions in order to train the 

network with a reduced number of layers, training 

parameters, and kernels. The Adam optimizer is applied 

to optimize the proposed network. The experimental 

findings provide evidence that the proposed method 

exhibits an above-average accuracy of 99.13% when 

compared to the most recent advancements in cataract 

detection. Cahya et al. [11] accomplished The CNN 

AlexNet model achieves a remarkable accuracy of 
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98.37%, making it the most precise. The utilization of 

the Adam optimizer and feature extraction in three 

layers - the convolutional layer, the pooling layer, and 

the fully connected layer - achieves this. Syarifah et al. 

[12] applied CNN The Lookahead optimizer on SGD 

and Adam integrated into the AlexNet architecture 

improved optimizer SGD by 2.5% and increased Adam's 

precision by 20%. By implementing Lookahead 

optimization, Adam achieved a training and validation 

accuracy of 97.5%. 

2. Research Method 

In this study, we used desktop computers to analyze the 

data. The system employs the Windows 11 Pro 64-bit 

operating system, powered by a 12th generation Intel 

Core i7-12700H processor with 20 CPUs, running at 

around 2.3 GHz, and equipped with 32768MB of RAM. 

The Jupyter Notebook version used is 6.5.2, the Python 

version is 3.10.9, the Scikit-Learn version is 1.1.2, and 

the TensorFlow version is 2.8.0. This study utilized 

fundus images, which were categorized into two groups: 

normal fundus (label = 0) and cataract fundus (label = 

1). The images were divided into training data (N = 80), 

validation data (N = 20), and test data (N = 20), as shown 

in Table 1. 

Table 1. Segmentation of fundus images 

Class Label 
Training 

Data 
Validation 

Data 

Normal 0 80 20 

Cataract 1 80 20 
Total Data 160 40 

The approach applied to CNN with the EfficientNet 

architecture can be seen in Figure 1 through the addition 

of additional components or layers into the CNN design. 

The study examined various neural network design 

approaches for classification, including Stochastic 

Gradient Descent, Adaptive Moment Estimation, Root 

Mean Square Propagation, the adaptive gradient 

algorithm, adaptive delta, and Nesterov-accelerated 

adaptive moment estimation. 

 

Figure 1. Identify the optimal process flow diagram for the 

classification method. 

2.1. Dataset  

The fundus image dataset was sourced from the Kaggle 

dataset [13]. Images are processed using the RGB 

format, which stands for red, green, and blue. Images are 

read using OpenCV's cv2.imread function and resized. 

This method is applied to RGB images by OpenCV's 

cv2.imread function. The parameter initialization 

involves assigning a value of 32 to the 'batch_size' 

variable, indicating that the model will process 32 

images during each training iteration. To provide the 

dimensions of the input images for the model, we assign 

the value (224, 224) to the image_size variable. 

The data collection procedure commences by 

establishing the number of samples required for training, 

validation, and testing in each category, namely 20 for 

validation, 20 for testing, and 80 for training. We 

provide and prepare the image labels, which identify 

normal (0) and cataract (1), for utilization in training 

classification models aimed at detecting cataracts in 

medical images. Figure 2 illustrates the disparity 

between regular fundus and cataract fundus photos in 

RGB format, whereas Figure 3 demonstrates the 

contrast between normal fundus and cataract fundus 

images in grayscale format. 

 

 

Figure 2. Normal and cataract fundus images in RGB format. 

 

 

Figure 3. Normal and cataract fundus images in grayscale form. 

2.2. Classification using EfficientNet architecture 

CNN is a special artificial neural network for image 

processing. CNN emulates the manner in which nerve 

cells transmit information to linked neurons. CNN 

represents each neuron in two dimensions, while 

Multilayer Perceptron represents each neuron as one-

dimensional [14]. Deep CNN architectures sometimes 

include an excessive number of parameters. This is a 

result of the network's increasing depth, breadth, and 

number of convolutional layers.  As a result, The 

effectiveness of the network decreases with the addition 

of more convolutional layers and increased network 

breadth and depth. increasing the computational cost of 

the system. There exists a compromise between the 

effectiveness of a network and the level of precision it 

can achieve. Although deep networks may demonstrate 

strong generalizations based on test results, their 
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effectiveness keeps improving regarding network 

parameters, dimensions of the model, floating-point 

operations per second (flops), and inference speed.  

 In 2019, the Google AI research team published a 

collection of EfficientNet models.; these models include 

EfficientNetB0 and EfficientNetB7 [15]. This series has 

demonstrated superior contrast, performance in 

segmentation, more transfer learning-based tasks, and 

image classification using ImageNet to a number of 

cutting-edge deep CNN-based architectures, including 

DenseNet, Inception-V3, ResNet50, and Inception-

ResNetV2. To scale up the CNN architecture, 

EfficientNet employed uniform compound scaling and 

fixed scaling coefficients [16]. 

Table 2. Sequential Neural Network Architecture 

Layer (type) Output Shape               Param #    

efficientnetb0 (Functional)   (None, 7, 7, 1280 
4049571    

 

global_average_pooling2d 
(GlobalAveragePooling2D)                                           

(None, 1280)              0 

dense (Dense)                 (None, 512)               655872 

dropout (Dropout)             (None, 512)               0    
dense_1 (Dense)               (None, 1)                 513 

Total params: 4,705,956 

Trainable params: 4,663,933 
Non-trainable params: 42,023 

  

The model presented in Table 2 is a sequential neural 

network design that integrates EfficientNetB0 as a 

functional layer. Feature extraction is carried out by the 

EfficientNetB0 layer, which generates a tensor with the 

following dimensions: None, 7, 7, 1280, with a total of 

4,049,571 parameters. Subsequently, a 

GlobalAveragePooling2D layer is utilized to calculate 

the mean value of each characteristic in the 7x7x1280 

matrix, yielding a feature vector with a length of 1280. 

Following that, a dense layer consisting of 512 neurons 

processes this feature vector, resulting in the 

introduction of 655,872 parameters. Subsequently, a 

dropout layer is implemented with a dropout rate of 0, 

denoting the absence of dropout during the training 

process, in order to alleviate the issue of overfitting. The 

model ends with an additional dense layer that has only 

one neuron. This layer generates a binary classification 

output (None, 1) and has a total of 513 parameters. 

The model consists of a total of 4,705,956 parameters. 

Out of these parameters, 4,663,933 are trainable, 

meaning they can be modified during the training 

process. By comparison, there are 42,023 parameters 

classified as non-trainable, which remain constant 

during the training process. Non-trainable parameters 

often encompass elements such as batch normalization 

statistics or fixed components within the architecture. 

These parameters play a role in enhancing the stability 

and efficiency of the model during training. 

As illustrated in Figure 4, the general structure of 

EfficientNet contains a stem block, ten blocks, and a 

final layer. 

 

 

Figure 4. Stem and Final Layer in EfficientNet. 

2.3. The optimizer used in the EfficientNet architecture 

The CNN model applies optimizers to minimize loss and 

maximize production efficiency, utilizing momentum to 

expedite the optimization process. Keras has many 

optimizers, including stochastic gradient descent 

(SGD), adaptive moment estimation (Adam), root mean 

square propagation (RMSprop), adaptive gradient 

algorithm (AdaGrad), adaptive delta (AdaDelta), and 

Nesterov-accelerated adaptive moment estimation 

(Nadam). You can find more information about these 

optimizers on the Keras website: 

https://keras.io/api/optimizers/. 

In this study, we examine the formulations of SGD, 

Adam, RMSprop, AdaGrad, AdaDelta, and Nadam [17]. 

Based on the equation provided below, you can change 

the parameters of the CNN using SGD. 

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 − 𝜂𝛻𝐿 = (𝑊𝑜𝑙𝑑, 𝑥𝑖 , 𝑦𝑖) 

The updated weight, 𝑊𝑛𝑒𝑤, is calculated using the 

previous weight value, 𝑊𝑜𝑙𝑑, the learning rate, η, and 

the gradient of the loss function 𝐿 = (𝑊𝑜𝑙𝑑, 𝑥𝑖, 𝑦𝑖) 

is𝛻𝐿 = (𝑊𝑜𝑙𝑑, 𝑥𝑖 , 𝑦𝑖). 

Based on the equation provided below, you can change 

the parameters of the CNN using Adam. 

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 + ∆𝑊 

∆𝑊 = −𝜂
𝑚̂𝑡

√𝑢𝑡 + 𝜀
 

https://keras.io/api/optimizers/
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To ensure numerical stability, we employ a tiny 

constant, ε, set to 10-8. 

Based on the equation provided below, you can change 

the parameters of the CNN using RMSprop.𝑊𝑛𝑒𝑤 =
𝑊𝑜𝑙𝑑 − 𝜂

√𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒(𝑊,𝑡)
 𝛻𝐿(𝑊𝑜𝑙𝑑) 

𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒(𝑊, 𝑡)
= 𝜌𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒(𝑊, 𝑡 − 1) + (1
− 𝜌)( 𝛻𝐿(𝑊))2 

Therefore, ρ represents the forgetting factor, which has 

a value of 0.9, and t represents the current time step. 

Based on the equation provided below, you can change 

the parameters of the CNN using AdaGrad. 

𝑊𝑡+1,𝑖 = 𝑊𝑡,𝑖 −
𝜂

√𝐺𝑡,𝑖𝑖 + 𝜀
 . 𝑔𝑡,𝑖 

The partial derivative of the loss function is 𝑔𝑡,𝑖. 𝑔𝑡,𝑖𝑖 

is a diagonal matrix with i diagonal elements. A 

smoothing factor, ε, prevents zero division. 

Based on the equation provided below, you can change 

the parameters of the CNN using AdaDelta. 

𝑊𝑡+1 = 𝑊𝑡 −
𝑅𝑀𝑆[∆𝑊]𝑡−1

𝑅𝑀𝑆[𝑔]𝑡
𝑔𝑡 

RMS refers to the root mean square error. 

Based on the equation provided below, you can change 

the parameters of the CNN using Nadam. 

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 −
𝜂

√√𝑢𝑡 + 𝜀

𝑚̂𝑡 

3.  Result and Discussion 

A total of 240 fundus images were used in this study, 

applying the EfficientNet architecture. The performance 

of various optimizers, including SGD, Adam, RMSprop, 

AdaGrad, AdaDelta, and Nadam, was evaluated to 

determine the optimal classification approach. Epoch 

Number set the total of 100, as seen in Table 3. 

Table 3. Classification Results of EfficientNet Using Different 

Optimisations 

 

The model trained with Adam Optimizer achieved its 

best epoch at 13, demonstrating a remarkable training 

accuracy of 1.0000. However, the validation loss and 

accuracy at the end of training were 1.2824 and 0.7750, 

respectively. Meanwhile, the testing loss was 

impressively low at 0.0002, with the testing accuracy 

matching the training accuracy at 1.0000. The training 

and testing process took a total of 5315.72 seconds. On 

the other hand, the Adagrad optimizer, in its best epoch 

at 2, resulted in a slightly higher training loss of 0.0303 

compared to Adam. Nevertheless, the training accuracy 

remained excellent at 1.0000. The validation loss and 

accuracy for Adagrad were 0.2965 and 0.8750, 

respectively. The testing loss and accuracy were 0.0465 

and 0.9500, respectively, indicating a robust 

generalization to unseen data. Notably, the total elapsed 

time for training and testing with Adagrad was slightly 

shorter, recorded at 4935.94 seconds. 

Figure 5 and Figure 6 show the graphical depiction of 

the loss function and model accuracy after applying data 

augmentation. 

 
Figure 5 displays the accuracy of model training and validation when 

data augmentation is implemented. 

 
Figure 6 displays the loss of model training and validation when data 

augmentation is applied. 

 
Figure 7. Data augmentation accuracy for Adam and Adagrad model 

training and validation. 

Optimizer
Epoch 

Number

Best 

Epoch

Training 

Loss

Training 

Accuracy

Validation 

Loss

Validation 

Accuracy

Testing 

Loss

Testing 

Accuracy

Elapsed 

Time 

(seconds)

SGD 100 54 0.1225 0.95 0.6356 0.8 0.3628 0.9 2575.16

Adam 100 13 0.0046 1 1.2824 0.775 0.0002 1 5315.72

RMSprop 100 87 0.0569 0.9812 1.9877 0.9 0.8647 0.9 2518.24

AdaGrad 100 2 0.0303 1 0.2965 0.875 0.0465 0.95 4935.94

AdaDelta 100 68 0.6143 0.6687 0.6266 0.7 0.4908 0.9 3570.92

Nadam 100 44 0.0355 0.9937 1.0153 0.775 0.19 0.95 7812.87
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Figure 8. Data augmentation loss for Adam and Adagrad model 

training and validation. 

4.  Conclusion 

The study examined the categorization of cataracts using 

fundus images by evaluating several Optimizer in 

EfficientNet architectures, including SGD, Adam, 

RMSprop, AdaGrad, AdaDelta, and Nadam, with RGB 

input. In summary, while Adam exhibited superior 

training accuracy, Adagrad demonstrated faster 

convergence and strong generalization performance on 

the validation and testing sets. Depending on the 

particulars of the job and the intended trade-offs 

between training speed and model generalization, one 

can select one of these optimizers. This study hopes to 

assist medical personnel in the early detection of 

cataracts while mitigating the potential concerns 

associated with cataracts and allowing the treatment of 

suitable medical interventions. Our goal is to increase 

the quantity of datasets in order to enhance the 

classification accuracy of the cataract detection system 

in the future. 
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